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Motivation

• So far we’ve built a model of the open economy driven by productivity shocks and

argued that it can capture the observed countercyclicality of the trade balance.

• We also established that two features of the model are important for making this
prediction possible:

1. productivity shocks must be sufficiently persistent.

2. capital adjustment costs must not be too strong.

• Now, we ask more questions about the ability of that model to explain observed
business cycles. Can it explain ...

• the sign and magnitude of business-cycle indicators, such as the standard deviation,

serial correlation, and correlation with output of output, consumption, investment,

the trade balance, and the current account.
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The Small Open Economy RBC Model

To make the models studied in chapters 2 and 3 more empirically realistic and to give

them a better chance to account for observed business-cycle regularities add:

1. endogenous labor supply and demand

2. uncertainty in the technology shock process

3. capital depreciation.

The resulting theoretical framework is known as the Small Open Economy

Real-Business-Cycle model, or, succinctly, the SOE-RBC model.

2/42



The Household’s Maximization Problem

E0

∞∑
t=0

βtU(ct , ht) (4.1)

subject to

ct + it + Φ(kt+1 − kt) + (1 + rt−1)dt−1 = yt + dt (4.2)

yt = AtF (kt , ht) (4.3)

kt+1 = (1− δ)kt + it (4.4)

lim
j→∞

Et
dt+j∏j

s=0(1 + rs)
≤ 0 (4.5)

Capital adjustment cost, Φ(0) = Φ′(0) = 0; Φ′′(0) > 0
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The Household’s Maximization Problem

Additions/differences to the model analyzed in Chapter 3

• endogenous labor supply, U(ct , ht)

• endogenous labor demand, F (kt , ht)

• uncertainty, At is stochastic

• the interest rate is no longer constant, rt 6= r

• depreciation, δ no longer 0
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Household’s Optimality Conditions

ct + kt+1 − (1− δ)kt + Φ(kt+1 − kt) + (1 + rt−1)dt−1 = AtF (kt , ht) + dt (4.6)

λt = β(1 + rt)Etλt+1 (4.7)

Uc(ct , ht) = λt (4.8)

− Uh(ct , ht) = λtAtFh(kt , ht) (4.9)

1 + Φ′(kt+1 − kt) = βEt
λt+1

λt
[At+1Fk(kt+1, ht+1) + 1− δ + Φ′(kt+2 − kt+1)] (4.10)
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Let’s talk about Non-Stationarity and so on...

• Let’s take a quick stop here and let’s think about the debt-Euler equation again:

Uc(ct , ht) = β(1 + rt)EtUc(ct+1, ht+1)

What happens if we impose steady state?
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Inducing Stationarity: External debt-Elastic Interest Rate (EDEIR)

rt = r∗ + p(d̃t) (4.14)

r∗ = constant world interest rate

p(d̃t) = country interest-rate premium

d̃t = cross-sectional average of debt

In equilibrium cross-sectional average of debt must equal individual debt

d̃t = dt (4.15)

Evolution of Total Factor Productivity, AR(1) process

lnAt+1 = ρ lnAt + η̃εt+1 (4.12)
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The Trade Balance

tbt = yt − ct − it − Φ(kt+1 − kt) (4.20)

The Current Account

cat = tbt − rt−1dt−1 (4.21)
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Equilibrium Conditions

− Uh(ct , ht)

Uc(ct , ht)
= AtFh(kt , ht) (4.11)

ct + kt+1 − (1− δ)kt + Φ(kt+1 − kt) + [1 + r∗ + p(dt−1)]dt−1 = AtF (kt , ht) + dt (4.16)

Uc(ct , ht) = β(1 + r∗ + p(dt))EtUc(ct+1, ht+1) (4.17)

1 = βEt

{
Uc(ct+1, ht+1)

Uc(ct , ht)

[At+1Fk(kt+1, ht+1) + 1− δ + Φ′(kt+2 − kt+1)]

1 + Φ′(kt+1 − kt)

}
(4.18)

This is a system of non-linear stochastic difference equations. It does not have a closed form

solution. We will use numerical techniques to find a first-order accurate approximate solution

around the nonstochastic steady state. This is a local approximation. (Later we will also

consider a global solution method.)
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Equilibrium Conditions (cont’d)

Note:

For capital, the system is a second-order difference equation as it features kt , kt+1 and

kt+2. We would like to have a system of first-order difference equations. To this end,

introduce the auxiliary variable k ft and impose

k ft = kt+1

Note that k ft is in the information set of period t. This equation together with the four

above equations forms a system of stochastic first-order difference equations in the 5

unknowns: ct , ht , dt−1, kt , and k ft .
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Now what?

• We’ve developed a RBC model of a SOE in the previous classes.

• Now what?

• Under special assumptions: Analytic solutions (i.e. closed-form decision rules).

• In general: we need to rely on numerical methods

• One of the most common approaches: first-order perturbation (or linearization)

around the deterministic s.s.

• Q: How do we compute the “deterministic s.s.” of our model?

• We first need to determine functional forms.
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Functional Forms

• First-order pertubation method requires Taylor approximations around the

deterministic s.s.

• In turn, this requires first-derivatives of eq. conditions → tedious process for large

models → use of statistical software.

• Finally, this implies we need specific functional forms: preferences and

technologies.

Preferences

U(c , h) =
G (c , h)1−σ − 1

1− σ
with σ > 0, and:

G (c, h) = c − hω

ω

where ω > 1.

12/42



Functional Forms - GHH preferences

• These preferences are due to Greenwood, Hercowitz, and Huffman (1988 AER)

and are typically called “GHH preferences”.

• Neat property: MRS btw consumption and leisure depends only on labor.

• Labor supply is income/wealth inelastic.

• Use (4.8), (4.9) and the GHH form:

hω−1
t = wt (= AtFh(kt , ht))

• Wage elasticity of labor supply: 1/(ω − 1) and independent from cons.

• U(c , h) is CRRA over sub-utility index G (c , h)

• σ degree of RRA, and 1/σ IES.
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Functional Forms - Technologies

Production Function

• Typically assume Cobb-Douglas prod. func.

F (k, h) = kαh1−α, α ∈ (0, 1)

• Unitary elasticity of subst. btw capital and labor

• Devide (25) by (26):
1− α
α

kt
ht

=
wt

ut

• ... take logs in both sides...

log

(
kt
ht

)
= log

(
wt

ut

)
− const

Capital-labor ratio is proportional to the wage-rental ratio.

14/42



Functional Forms - Technologies II

Capital Adjustment Cost

Φ(x) =
φ

2
x2

• φ > 0. Net investment (+ or -) generates adj. costs.

EDEIR form

p(d) = ψ1

(
ed−d̄ − 1

)

• ψ1 > 0, and d̄ are parameters.

• Country premium is increasing and convex in net external debt.
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Deterministic Steady State

• Recall stochastic process:

logAt+1 = ρlogAt + η̃εt+1 (12)

where ρ ∈ (−1, 1).

• A deterministic economy is one with η̃ = 0.

• A deterministic s.s. is an equilibrium of that economy in which all endogenous

variables are constant over time.

• Why do we care?

1. Steady state facilitates calibration because it is ≈ average position of the stochastic

economy.

2. Det. s.s. often used as point of reference for linearization.
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Deriving the Deterministic Steady State

Remember optimality conditions:

−Uh(ct , ht)

Uc(ct , ht)
= AtFh(kt , ht) (11)

dt = (1 + rt−1)dt−1 − AtF (kt , ht) + ct + kt+1 − (1− δ)kt + ... (15)

Φ(kt+1 − kt)

Uc(ct , ht) = β(1 + r∗ + p(dt))EtUc(ct+1, ht+1) (16)

Uc(ct , ht) = βEt
Uc(ct+1, ht+1)

[1 + Φ′(kt+1 − kt)]
[At+1Fk(kt+1, ht+1) + ... (17)

1− δ + Φ′(kt+2 − kt+1)]

• For any variable, we denote the s.s. value by removing “t” subscript.
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Deriving the Deterministic Steady State - II

From (16) we obtain:

1 = β[1 + r∗ + ψ1(ed−d̄ − 1)]

w.l.o.g. assume: β(1 + r∗) = 1. Combining we get: d = d̄ .

The s.s. version of (17) reads:

1 = β

[
α

(
k

h

)(α−1)

+ 1− δ

]

From here we get the s.s. expression for the capital-labor ratio:

k/h =

(
β−1 − 1 + δ

α

)1/(α−1)

≡ κ
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Deriving the Deterministic Steady State - III

Using κ in the s.s. version of (11), we obtain:

h = [(1− α)κα]1/(ω−1)

Next, given the s.s. values for capital-labor ratio and labor, we get:

k = κh

Finally, use (15) in s.s. to obtain:

c = −r∗d̄ + καh − δk

→ We now have s.s. values for: c , h, k , d
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Calibration

• There is an “art” in assigning values to structural parameters in our models.

• In general, two approaches: estimation and calibration.

• Calibration assigns values in three ways

(a) Based on sources unrelated to the macro variables we want to explain.

(b) To match first order moments of data we want to explain.

(c) To match second-order moments of data we want to explain.

• Calibration of SOE-RBC based on Mendoza (1991 AER). Data: Canada. Time

unit: 1 year. Quadratic detrending.

• 10 parameters: σ, δ, r∗, α, d̄ , ω, φ, ψ1, ρ and η̃.

20/42



Calibration - II

(a) Parameters based on sources unrelated to the macro variables we want to

explain

Concept Parameter Value

RRA σ 2

World Interest Rate r∗ 0.04

Depreciation rate δ 0.1
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Calibration - III

(b) Parameters set to match 1st-order moments of data we want to explain

• Two parameters: α and d̄ .

• α→ average labor share in Canada (0.68).

In our model: wh
y = 1− α ⇒ α = 0.32.

• d̄ → to match average tb/y in Canada (0.02).

Using definition of TB (eq. 19) and (15):

tb = r∗d̄

In the det. s. s. we should run a TB large enough to just service external debt

• Solving for d̄ :

d̄ =
tb/y

r∗
y
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Calibration - IV

(b) Parameters set to match 1st-order moments of data we want to explain

(cont’d)

d̄ =
tb/y

r∗
y

• We know tb/y = 0.02 and r = 0.04, but don’t know y .

• From s.s. derivation we can obtain:

y = [(1− α)καω]1/(ω−1)

where κ =
(

α
r∗+δ

)1/(1−α)

• The only unknown is ω.
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Calibration - V

(c) Parameters set to match 2nd-order moments of data we want to explain

• Five parameters: ω, φ, ψ1, ρ, η̃.

• Moments to match: std. dev. of hours worked (2.02%), std. dev. investment

(9.82%), std. dev. tb/y (1.87%), serial corr. of output (0.62), and std. dev.

output (2.81%).

• Calibration Strategy:

1. Guess five value

2. Approximate the equilibrium dynamics

3. Compute model-implied moments of interest

4. If ∃ match btw data and model-generated moments, convergence achieved.

If not, update guess and return to step (1).
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Calibration - VI

Concept Parameter Value

IES σ 2

World Interest Rate r∗ 0.04

Depreciation rate δ 0.1

Labor Share α 0.32

Avg. Debt level in s.s. d̄ 0.7442

Frisch elasticity ω 1.455

Adj. Cost param φ 0.028

Int. rate debt elasticity ψ1 0.000742

TFP Shock persistence ρ 0.42

TFP Shock std. dev. η̃ 0.0129

NOTE: This is just one possible calibration strategy.
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App. equilibrium dynamics - SGU algorithm

• Numerical solution of SOE-RBC → multiple methods; here only linear app.

• Still, more than one option: Dynare, Uligh’s Toolkit, KPR, etc. Here SGU (2004

JEDC).

• Some vars. expressed in deviations from s.s. → ct , ht , kt ,At . Other vars expressed

in levels → rt , dt−1.

• Define yt ≡ [ln ct ln ht ]
′, vector of control variables.

• Define x1
t ≡ [dt−1 ln kt ]

′, vector of endogenous state variables.

• Define x2
t ≡ [lnAt ]

′, vector of exogenous state variables.

⇒ xt ≡ [x1′
t x2′

t ]′ vector of state variables.

• Next step: Apply conditional expectations to (12) → Et lnAt+1 − ρlnAt = 0.
• Together with (11), (15)-(17) we can write:

Et f (yt+1, yt , xt+1, xt) = 0 (28)
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App. equilibrium dynamics - SGU algorithm II

• The law of motion for x2
t is:

x2
t+1 = ρx2

t + η̃εt+1 (29)

• Next, take care of TVC (eq. 18):

lim
j→∞

[
Etyt+1

Etxt+j

]
=

[
y ss

x ss

]
(30)

• The first-order accurate solution to (28)-(30) is given by:

x̂t+1 = hx x̂t + ηεt+1

and

ŷt = gx x̂t

where x̂t = xt − x ss and ŷt = yt − y ss .
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Predictions of our model

Before analyzing to which extend the SOE-RBC model can account for the observed Canadian

business cycle, let’s first study the predictions of this model building on the intuition from the

simpler versions. In particular, we learned that:

• the more persistent productivity shocks are, the more likely an initial deterioration of the

trade balance will be.

• the more pronounced are capital adjustment costs, the smaller will be the initial trade

balance deterioration in response to a positive and persistent productivity shock.

• the more persistent the technology shock is, the higher the volatility of consumption

relative to output will be. The next three figures show that these analytical results do

indeed hold in the fully-fledged stochastic dynamic open economy real-business-cycle

model.
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Impact on tb/y as a function of ρ

29/42



Impact on tb/y as a function of φ
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σc/σy as a function of ρ
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Empirical regularities of the Canadian Economy

Why Canada? Because it is a small open economy and it is the economy studied in

Mendoza (1991).

Variable σxt ρxt ,xt−1 ρxt ,GDPt

y 2.81 0.62 1

c 2.46 0.70 0.59

i 9.82 0.31 0.64

h 2.02 0.54 0.80

tb/y 1.87 0.66 -0.13
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Performance of the model - 2nd moments

Variable Canadian Data Model

σxt ρxt ,xt−1 ρxt ,GDPt σxt ρxt ,xt−1 ρxt ,GDPt

y 2.81 0.62 1 3.08 0.62 1.00

c 2.46 0.70 0.59 2.71 0.78 0.84

i 9.82 0.31 0.64 9.04 0.07 0.67

h 2.02 0.54 0.80 2.12 0.62 1.00

tb/y 1.87 0.66 -0.13 1.78 0.51 -0.04

ca/y 1.45 0.32 0.05
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Performance of the model - IRFs
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Performance of the model - Role of ρ and adj. costs on TB

Broken line: ρ = 0.21. Crossed line: φ = 0.084.

Remember Principles I and II !
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SOE-RBC with Complete Asset Mkts

Variable σxt ρxt ,xt−1 ρxt ,GDPt

y 3.1 0.61 1.00

c 1.9 0.61 1.00

i 9.1 0.07 0.66

h 2.1 0.61 1.00

tb/y 1.6 0.39 0.13

ca/y 3.1 -0.07 -0.49
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Other ways to induce stationarity

1. Internal Debt-Elastic Interest Rate Model (IDEIR)

2. Portfolio Adjustment Cost Model (PAC)

3. External Discount Factor Model (EDF) – Uzawa-Epstein-Zin preferences

4. Internal Discount Factor Model (EDF)

5. Perpetual Youth Model (PY)

6. Complete Asset Markets Model (CAM)

All of these work with linearized solution techniques. Moreover, the business cycle

implications (when calibrated properly) are almost identical (SGU, JIE 2003).
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IRFs across models
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Global solution

• Everything so far has been assuming a linearized solution (around the

deterministic s.s.)

• Alternatively, one can solve the model “globally”.

• We can induce stationarity in this model by assuming

β(1 + r∗) < 1

• Solution algorithm based on VFI:

v(d , k ,A) = max
d ′,k ′

{
U(AF (k , h) + (1− δ)k − k ′ − Φ(k ′ − k) + d ′ − (1 + r∗)d − hω

ω
)

+ βEA′|Av(d ′, k ′,A′)
}

• Business cycle moments very similar to EDEIR model (except autocorr. of tb).
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