REVIEW OF CONSUMER THEORY

CHAPTER 1

- □ Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

- □ Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good
- One-good case: u(c), with du/dc > 0 and $d^2u/dc^2 < 0$
 - □ Recall interpretation: strictly increasing at a strictly decreasing rate
 - □ Diminishing marginal utility

- □ Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

 Alternative notation: $du/dc \text{ OR } u'(c) \text{ OR } u_c(c) \text{ OR } u_1(c)$
- One-good case: u(c), with du/dc > 0 and $d^2u/dc^2 < 0$
 - □ Recall interpretation: strictly increasing at a strictly decreasing rate
 - □ Diminishing marginal utility

- □ Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

 Alternative notation: $du/dc \ OR \ u'(c) \ OR \ u_c(c) \ OR \ u_1(c)$
- One-good case: u(c), with du/dc > 0 and $d^2u/dc^2 < 0$
 - □ Recall interpretation: strictly increasing at a strictly decreasing rate
 - □ Diminishing marginal utility
- Two-good case: $u(c_1, c_2)$, with $u_i(c_1, c_2) > 0$ and $u_{ii}(c_1, c_2) < 0$ for each of i = 1,2
 - Utility strictly increasing in each good individually (partial)
 - □ Diminishing marginal utility in each good individually

- □ Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

 Alternative notation: $du/dc \ OR \ u'(c) \ OR \ u_c(c) \ OR \ u_1(c)$
- One-good case: u(c), with du/dc > 0 and $d^2u/dc^2 < 0$
 - □ Recall interpretation: strictly increasing at a strictly decreasing rate
 - □ Diminishing marginal utility
- Two-good case: $u(c_1, c_2)$, with $u_i(c_1, c_2) > 0$ and $u_{ii}(c_1, c_2) < 0$ for each of i = 1,2
 - Utility strictly increasing in each good individually (partial)
 - □ Diminishing marginal utility in each good individually
- \square Easily extends to N-good case: $u(c_1, c_2, c_3, c_4, ..., c_N)$

One-good case

Slope (marginal utility) asymptotes to (but never reaches...) zero

Example: $u(c) = \ln c$ or $u(c) = \operatorname{sqrt}(c)$

Alternative views

Emphasizing the contours

Indifference Curve: the set of all consumption bundles that deliver a particular level of utility/happiness

- Marginal Rate of Substitution (MRS)
 - Maximum quantity of one good consumer is willing to give up to obtain one extra unit of the other good
 - ☐ Graphically, the (negative of the) slope of c₂ an indifference curve
 - ☐ MRS is itself a function of c_1 and c_2 (i.e., $MRS(c_1, c_2)$)

- Marginal Rate of Substitution (MRS)
 - Maximum quantity of one good consumer is willing to give up to obtain one extra unit of the other good
 - ☐ Graphically, the (negative of the) slope of c₂ an indifference curve

MRS equals ratio of marginal utilities

$$\square MRS(c_1, c_2) = \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)}$$

□ Using Implicit Function Theorem (see Practice Problem Set 1)

- Marginal Rate of Substitution (MRS)
 - Maximum quantity of one good consumer is willing to give up to obtain one extra unit of the other good
 - ☐ Graphically, the (negative of the) slope of c₂ an indifference curve

MRS equals ratio of marginal utilities

$$\square MRS(c_1, c_2) = \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)}$$

- □ Using Implicit Function Theorem
- Summary: whether graphically- or mathematically-formulated, utility functions describe the benefit side of consumer optimization

- □ Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \Box Assume income Y is taken as given by consumer for now...

- **□** Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - □ Assume income *Y* is taken as given by consumer for now...

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - \square Assume income Y is taken as given by consumer for now...

Plotted in 2D-consumption-space

- **□** Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - \square Assume income Y is taken as given by consumer for now...

Isolate c_2 to graph the budget constraint

Plotted in 2D-consumption-space

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - \square Assume income Y is taken as given by consumer for now...

Isolate c_2 to graph the budget constraint

Plotted in 2D-consumption-space

- □ Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - □ Assume income *Y* is taken as given by consumer for now...

Plotted in 3D-consumption-space

Plotted in 2D-consumption-space

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - \square Assume income Y is taken as given by consumer for now...
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - \square Assume income Y is taken as given by consumer for now...

Plotted in 3D-consumption-space

Plotted in 2D-consumption-space

 Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
- ☐ One-good case

- □ Consumer's decision problem: maximize utility subject to budget constraint bring together both cost side and benefit side
- ☐ One-good case
 - $\Box \qquad \text{Trivially, choose } c = Y/P$

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - No decision to make here...

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - No decision to make here...

- ☐ Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - ☐ A non-trivial decision problem...

- □ Consumer's decision problem: maximize utility subject to budget constraint bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - No decision to make here...

- ☐ Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - □ A non-trivial decision problem...

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - No decision to make here...

u(c) A Y/P C

- ☐ Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - A non-trivial decision problem...

Optimal choice occurs at point of tangency between budget line and an indifference curve

- Consumer's decision problem: maximize utility subject to budget constraint bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - ☐ No decision to make here...

OPTIMALITY CONDITION:

MRS = slope of budget line

At the optimal choice,

- ☐ Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - □ A non-trivial decision problem...

C₂
Utility increasing in the northeast direction

Highest attainable indifference curve

Optimal choice occurs at point of tangency between budget line and an indifference curve

- □ Consumer's decision problem: maximize utility subject to budget constraint bring together both cost side and benefit side
- One-good case
 - Trivially, choose c = Y/P
 - ☐ No decision to make here...
- ☐ Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - A non-trivial decision problem...

Optimal choice occurs at point of tangency between budget line and an indifference curve

OPTIMALITY CONDITION:
At the optimal choice,
MRS = slope of budget line

Y/P

ratio of marginal utilities = price ratio

Highest attainable indifference curve

u(c)

- □ Consumer optimization a constrained optimization problem
 - □ Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems

- □ Consumer optimization a constrained optimization problem
 - Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square subject to the constraint g(x,y) = 0 (Note formulation of constraint)

- □ Consumer optimization a constrained optimization problem
 - □ Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function __ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

- □ Consumer optimization a constrained optimization problem
 - □ Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function ___ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Step 2: Compute first-order conditions with respect to x, y, and λ

- □ Consumer optimization a constrained optimization problem
 - **☐ Maximize some function (economic application: utility function)...**
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function ___ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Step 2: Compute first-order conditions with respect to x, y, and λ

1)
$$f_x(x, y) + \lambda g_x(x, y) = 0$$

- □ Consumer optimization a constrained optimization problem
 - **☐ Maximize some function (economic application: utility function)...**
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function ___ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Step 2: Compute first-order conditions with respect to x, y, and λ

1)
$$f_{x}(x, y) + \lambda g_{x}(x, y) = 0$$

2)
$$f_{y}(x, y) + \lambda g_{y}(x, y) = 0$$

- □ Consumer optimization a constrained optimization problem
 - □ Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function ___ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

Step 2: Compute first-order conditions with respect to x, y, and λ

- 1) $f_{x}(x, y) + \lambda g_{x}(x, y) = 0$
- 2) $f_{y}(x, y) + \lambda g_{y}(x, y) = 0$

3) g(x, y) = 0

<u>Rationale:</u> setting first derivatives to zero isolates maxima (or minima...technically, need to check second-order condition...)

Step 3: Solve the system of first-order conditions for x, y, and λ Often most interested in simply eliminating the multiplier...

- Step 3: Solve the system of first-order conditions for x, y, and λ Often most interested in simply eliminating the multiplier...
 - □ From eqn 1), isolate λ : $\lambda = -\frac{f_x(x,y)}{g_x(x,y)}$

- Step 3: Solve the system of first-order conditions for x, y, and λ
 - □ Often most interested in simply eliminating the multiplier...
 - □ From eqn 1), isolate λ : $\lambda = -\frac{f_x(x, y)}{g_x(x, y)}$
 - **Insert expression for λ in eqn 2):** $f_y(x,y) \frac{f_x(x,y)}{g_x(x,y)} g_y(x,y) = 0$

- Step 3: Solve the system of first-order conditions for x, y, and λ
 - □ Often most interested in simply eliminating the multiplier...
 - □ From eqn 1), isolate λ : $\lambda = -\frac{f_x(x,y)}{g_x(x,y)}$
 - Insert expression for λ in eqn 2): $f_y(x,y) \frac{f_x(x,y)}{g_y(x,y)} g_y(x,y) = 0$
 - ☐ Rearrange
 - \Box Optimality condition: at the optimum (x^*, y^*)

$$\frac{f_x(x^*, y^*)}{f_y(x^*, y^*)} = \frac{g_x(x^*, y^*)}{g_y(x^*, y^*)}$$

- **Step 3:** Solve the system of first-order conditions for x, y, and λ
 - Often most interested in simply eliminating the multiplier...
 - From eqn 1), isolate λ : $\lambda = -\frac{f_x(x,y)}{g_x(x,y)}$
 - Insert expression for λ in eqn 2): $f_y(x,y) \frac{f_x(x,y)}{g(x,y)} g_y(x,y) = 0$
 - Rearrange
 - Optimality condition: at the optimum (x^*, y^*)

$$\frac{f_x(x^*, y^*)}{f_y(x^*, y^*)} = \frac{g_x(x^*, y^*)}{g_y(x^*, y^*)}$$
Graphical interpretation: at the constrained optimum, the function $f(.)$ is tangent to the function $g(.)$

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- □ Constraint: $g(c_1,c_2) = Y P_1c_1 P_2c_2 = 0$

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- $\Box \qquad \text{Constraint: } g(c_1,c_2) = Y P_1c_1 P_2c_2 = 0$
- Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- □ Constraint: $g(c_1,c_2) = Y P_1c_1 P_2c_2 = 0$
- Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ

$$u_1(c_1, c_2) - \lambda P_1 = 0$$

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ

$$u_1(c_1, c_2) - \lambda P_1 = 0$$

$$u_2(c_1, c_2) - \lambda P_2 = 0$$

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- □ Constraint: $g(c_1,c_2) = Y P_1c_1 P_2c_2 = 0$
- Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

- Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ
 - 1) $u_1(c_1, c_2) \lambda P_1 = 0$
 - 2) $u_2(c_1,c_2) \lambda P_2 = 0$
 - 3) $Y P_1c_1 P_2c_2 = 0$

- □ Apply Lagrange tools to consumer optimization
- \Box Objective function: $u(c_1,c_2)$
- □ Constraint: $g(c_1,c_2) = Y P_1c_1 P_2c_2 = 0$
- Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

- Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ
 - 1) $u_1(c_1, c_2) \lambda P_1 = 0$
 - $u_2(c_1, c_2) \lambda P_2 = 0$
 - 3) $Y P_1c_1 P_2c_2 = 0$
- Step 3: Solve (focus on eliminating multiplier from eqns 1 & 2)

$$\frac{u_1(c_1^*, c_2^*)}{u_2(c_1^*, c_2^*)} = \frac{P_1}{P_2}$$
 OPTIMALITY CONDITION

i.e., MRS = price ratio

THE THREE MACRO (AGGREGATE) MARKETS

