Does It Matter How Central Banks Accumulate Reserves? Evidence from Sovereign Spreads

César Sosa-Padilla¹ Federico Sturzenegger²

¹University of Notre Dame, FRB Minneapolis & NBER

²Universidad de San Andrés & Harvard Kennedy School

February 2022

Motivation

- Large literature on the benefits of reserve accumulation
 - Liquidity
 - Hedging
 - Mercantilism
- Very little literature on whether these effects change depending on how reserves are accumulated.
 - External liabilities
 - Domestic liabilities
 - Unsterilized purchases
- This paper tries to fill this gap: focus on sovereign spreads

What do we do?

- Provide simple **sovereign default** model with (potentially) state-contingent **long-term debt** and **reserves**
 - **Result:** reserve accum. w/ contingent debt is associated to lower spreads (intuition: cont. debt gives you a *break* in bad states of nature)
 - Improves on Alfaro-Kanczuk
- We test this in a panel of countries
 - **Result:** accumulating debt with domestic currency liabilities reduces spreads, with foreign debt it does not.
- We test the result using exogenous shocks (shocks to the VIX index)
 - **Result:** the more countries build their reserves with foreign (domestic) liabilities the larger (smaller) the increase in spreads.

Main Elements of the Model

• Equilibrium default model à la Eaton-Gersovitz (Aguiar-Gopinath; Arellano) with long-term debt and reserves (Bianchi-Hatchondo-Martinez), (Bianchi-Sosa Padilla)

Twist: allow for state-contingent debt

- Economy receives stochastic endowment y, follows a Markov process.
- Objective of the government: $\mathbb{E}_t \sum_{i=t}^{\infty} \beta^{j-t} u(c)$; u' > 0, u'' < 0
- Government issues (potentially) state-contingent long-duration bonds (b) and saves in one-period risk free assets (a), all in units of tradable endowment
- Defaults are total and entail one-period exclusion and utility loss $\psi_d(y)$
- Risk averse foreign lenders \rightarrow "risk-premium shocks"

Asset/Debt Structure

- Long-term bond (b):
 - state-contingent coupon, which decreases at rate $\boldsymbol{\delta}$

$$\mathcal{C}_t = \kappa \left[1 + \phi \left(y_t - \overline{y} \right) \right]$$

- simple way of modeling state-contingent claims (similar to Roch and Roldan, 2021)
- bond purchased in t pays $\{C_{t+1}, (1-\delta)C_{t+2}, (1-\delta)^2C_{t+3}, ...\}$
- price is q
- Reserves (*a*):
 - risk-free one-period asset which pays one unit of consumption
 - price is q_a

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y, \nu\}$
- Not essential for the analysis, but helps to capture **global factors** and match **spread dynamics**
- Formulation follows Vasicek (77) and implies constant short-term risk-free rate:

$$q_a = \mathbb{E}_{s'|s} m(s, s') = e^{-r}$$

• Bond price given by:

$$oldsymbol{q} = \mathbb{E}_{s'|s} \left\{ m(s,s')(1-d') \left[\mathcal{C}' + (1-\delta) \, q'
ight]
ight\}$$

Model: recursive formulation

$$V(b, a, s) = \max_{d \in \{0,1\}} \Big\{ d V_1(a, s) + (1 - d) V_0(b, a, s) \Big\},$$
(1)

where

$$V_{1}(a,s) = \max_{a'} \left\{ u\left(\underbrace{y+a-g-a'q_{a}}_{\text{consumption in def.}}\right) - \psi_{d}\left(y\right) + \beta \mathbb{E}_{s'|s} V\left(0,a',s'\right) \right\}.$$
(2)

$$V_{0}(b, a, s) = \max_{b', a', c} \Big\{ u(c) + \beta \mathbb{E}_{s'|s} V(b', a', s') \Big\},$$
(3)

subject to

$$c + g + \mathcal{C}(s)b + a'q_a = y + q(b', a', s)(b' - (1 - \delta)b) + a$$
(4)

Calibration (1)

- Nothing new. Mexican data, annual frequency.
- Follow Bianchi-Hatchondo-Martinez (2012, AER) exactly \rightarrow benchmark economy $\phi=0$

Utility function:

$$u(c)=rac{c^{1-\gamma}-1}{1-\gamma}, ext{ with } \gamma
eq 1$$

Utility cost of defaulting:

$$\psi_d(y) = \psi_0 + \psi_1 \log(y)$$

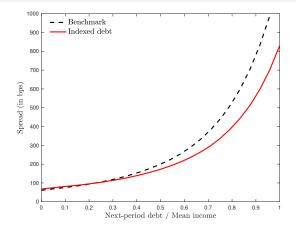
Tradable income process:

$$\log(y_t) = (1 - \rho)\mu_y + \rho \log(y_{t-1}) + \varepsilon_t$$

with |
ho| < 1 and $arepsilon_t \sim \textit{N}(0, \sigma_arepsilon^2)$

Calibration (2)

_		
Parameter	Description	Value
	Dialy free wate	0.04
r	Risk-free rate	0.04
β	Domestic discount factor	0.92
π_{LH}	Prob. of transitioning to high risk premium	0.15
π_{HL}	Prob. of transitioning to low risk premium	0.8
$\sigma_{arepsilon}$	Std. dev. of innovation to $log(y)$	0.034
ρ	Autocorrelation of $log(y)$	0.66
μ_y	Mean of $log(y)$	$-\frac{1}{2}\sigma_{\epsilon}^2$
	Government consumption	0.12
$\stackrel{{\sf g}}{\delta}$	Coupon decaying rate	0.2845
κ	Avg. coupon size	$(r+\delta)e^{-r}$
	Parameters set by simulation	
γ	Coefficient of relative risk aversion	3.3
ilio	Default cost parameter	2.45
$\psi_1^{\psi_0}$	Default cost parameter	19
, 1		
ω	Pricing kernel parameter	23


Model simulations

	Data	Model	
		Benchmark	Indexed debt
		$(\phi = 0)$	$(\phi=1)$
Targeted			
Mean debt (b/y)	43.5	43.3	54.2
Mean <i>rs</i> (in %)	2.4	2.4	2.6
Δr_s w/ risk-prem. shock	2.0	2.2	2.8
$\sigma(c)/\sigma(y)$	1.0	1.0	0.9
Non-Targeted			
$\sigma(r_s)$ (in %)	0.9	2.0	2.5
$\rho(r_s, y)$	-0.5	-0.7	-0.8
$\rho(c, y)$	0.8	0.9	0.9
Mean Reserves (<i>a</i> / <i>y</i>)	8.5	6.0	11.9

Using contingent debt:

- 1. gov holds more b (55% vs. 44%) and uses it to finance the \uparrow a (12% vs. 6%)
- 2. only a slightly higher average spread \rightarrow more res. and contingent coupons
- 3. portfolio in line w/ data, $a/b \approx 20\%$ (improvement over Alfaro-Kanczuk 2019)

State contingent debt and spreads

Testable implication: for a given debt level, financing reserves with contingent debt allows the country to pay lower spreads.

Taking the model to the data

- We'll test these model implications in a panel of emerging economies
- Two approaches:
 - 1. Fixed effects regressions
 - 2. Exogenous events (↑ VIX)
- Preview: results are consistent with the model.
 - 1. The way reserves are financed matters
 - 2. Using contingent debt helps reducing the spread, foreign debt doesn't.
- Warm-up exercise: holding debt (and other controls) constant, higher reserves are associated with lower spreads.

Panel regressions: extending Levy-Yeyati and Gomez (2020)

	Dependent v	variable: log(spread)
	(1)	(2)
Reserve Ratio	-2.58***	-2.76***
	(0.11)	(0.55)
Rating	-0.36***	-0.35***
	(0.03)	(0.11)
Sovereign Debt	1.53***	1.56***
	(0.05)	(0.53)
Private Debt	0.74***	1.01***
	(0.05)	(0.31)
Risk Aversion	0.76***	0.78***
	(0.02)	(0.06)
World Rate	-0.29***	-0.17
	(0.02)	(0.11)
Constant	2.29***	
	(0.15)	
Fixed effects?	No	Yes
Observations Adjusted R ²	4,497 0.52	4,497
Adjusted R	0.52	0.57

12/23

Taking the model to the data (2)

Use standardize CB balance sheet data:

Balanc	Balance Sheet					
Claims on non-residents (1)	Liabilities to non-residents (a)					
Claims on others depository corporations (2)	Monetary base (b)					
Net Claims on Central Government (3)	Other Liabilities To Other Depository Corpo- rations (c) Deposits and Securities other than Shares Ex- cluded from Monetary Base (d) Loans (e) Financial Derivatives (f) Shares and equity (g) Other items (h)					

Taking the model to the data (2)

\Downarrow

CB Balance Sheet					
Reserve Ratio External Liabilities					
Remunerated Domestic Liab					
Unsterilized Purchases					
	Others				

	Dependent variable: log(spread)			
	(6)	(7)	(8)	
Reserve Ratio	-0.25	- <u>3.24</u> ***	-2.85***	
	(1.04)	(0.43)	(1.08)	
Remunerated	-3.27**		-0.43	
Domestic Liabilites	(1.46)		(1.18)	
Unsterilized	-2.54	0.43		
Purchases	(1.56)	(1.29)		
External Liabilities		4.74^{***} (1.16)	4.32*** (0.97)	
Others	-1.89^{*} (1.05)	1.51^{**}	1.10	
Balance Sheet		(0.60)	(1.04)	
Other controls? Fixed effects? Year dummies? Observations Adjusted R ²	Yes Yes Yes 4,497 0.62	Yes Yes 4,497 0.63	Yes Yes 4,497 0.63	

Dependent variable: log(spread)						
Using:	ng: EL DL UP					
Reserve Ratio	-0.25	-3.24***	-2.85***			
	(1.04)	(0.43)	(1.08)			

Take home message:

- 1. How reserves are financed matters.
- 2. Accum. w/ domestic (contingent) liabilities helps reduce the spread, while using external liabilities does not. \rightarrow consistent w/ model

Robustness of our empirical results (1)

• Theory: benefits of contingent debt are higher for high debt and/or high spread \rightarrow Consistent w/ the data

	Dependent variable: log (spread)							
	External Liab.	Domestic Liab.	Unsterilized	External Liab.	Domestic Liab.	Unsterilized		
		High Debt			Low Debt			
	-0.33	-3.47***	-0.24	0.20	-1.26	-1.16		
	(1.18)	(0.89)	(1.01)	(1.37)	(0.77)	(1.75)		
Ν	1,188	1,188	1,188	1,734	1,734	1,734		
		High Spread			Low Spread			
	0.67	-2.92***	-0.98	-0.06	-1.35	-5.52***		
	(1.57)	(0.51)	(0.69)	(1.21)	(1.47)	(1.42)		
Ν	2,517	2,517	2,517	1,980	1,980	1,980		

Robust SE in parentheses. All specifications include country and year FEs. *p<0.1; **p<0.05; ***p<0.0 $\frac{1}{2}$

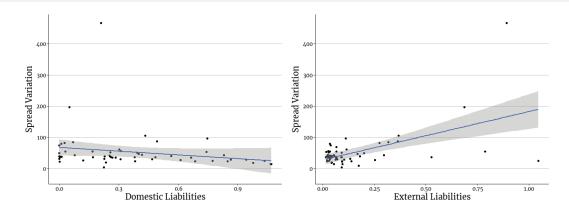
Robustness of our empirical results (2)

Prev. point holds more generally: contingent debt more beneficial in distress scenarios

• holds for: Devaluation rate, Fiscal deficit, Dollarization.

Dependent variable: log (spread)							
	External Liab.	Domestic Liab.	Unsterilized	External Liab.	Domestic Liab.	Unsterilized	
		High Rate Devaluation			Low Rate Devaluation		
	-0.26	-3.72***	-3.04***	-1.69	-1.29	-0.83	
	(1.08)	(0.95)	(0.89)	(2.82)	(1.11)	(2.06)	
Ν	2,683	2,683	2,683	1,814	1,814	1,814	
	With Deficit				Without Deficit		
	-2.36***	-7.37***	-4.49***	-0.61	-2.20***	-2.33	
	(0.50)	(0.85)	(0.83)	(1.94)	(0.83)	(2.31)	
Ν	1,166	1,166	1,166	1,471	1,471	1,471	
		Dollarizated Countries			Non-Dollarizated Countries		
	-0.41	-4.23***	-3.58***	-2.30*	-3.21***	-1.54	
	(0.78)	(1.06)	(1.26)	(1.23)	(0.60)	(0.98)	
Ν	2,005	2,005	2,005	1,908	1,908	1,908	

18/23


- Panel regressions \rightarrow endogeneity concerns (even w/ country and time FE)
- Use global (exogenous) shocks: sharp increases in the VIX (Rey 2013; Acharya and Krishnamurthy 2019)
- Identify events as any date in which
 - 1. $\Delta VIX > 20$ (wrt to avg. value in window of prior 5-10 days), and
 - 2. Avg. increase in sovereign spreads \geq 10 bps

Exogenous shocks: large increases in VIX

- May 7, 2010: flash crash in the US stock market (previous day),
- August 8, 2011: "Black Monday" of 2011 (S&P downgrades the US debt), and
- August 24, 2015: a second flash crash of the US stock market

Exogenous shocks: large increases in VIX

Punchline: the more a country financed its reserves with domestic liabilities, the smaller the \uparrow spread.

	Dep	Dependent variable: Spread Variation					
	Domestic Liabilities	External Liabilities	p-value difference				
Pooled	-39.80** (19.70)	155.00 (100.00)	0.06*				
First Event	-37.60*** (9.70)	45.10 (28.00)	0.00***				
Second Event	-58.00** (27.40)	208.00*** (37.30)	0.00***				
Third Event	-22.30 (36.90)	180.00 (167.00)	0.24				

Note: Robust standard errors in parentheses. *p<0.1; **p<0.05; ***p<0.01

Conclusions

- We show that the way reserve accumulation is financed matters.
- Focus: the effect on sovereign spreads.
 - Accum. w/ dollar debt provides liquidity but no hedge.
 - Domestic debt (either in LCU or indexed to domestic outcomes) provides both
 - \implies differential impact on default incentives (and spreads)
- Model's testable implications hold in the data: both panel regressions and exogenous shocks.
- Policy implications: reserve buildup programs *should* rely more on contingent debt.

Gracias !

Foreign Investors' SDF – details

Pricing kernel: a function of innovation to domestic income (ε) and a global factor ν = {0,1} (assumed to be independent)

$$m_{t,t+1} = e^{-r - \nu_t (\omega \varepsilon_{t+1} + 0.5 \omega^2 \sigma_{\varepsilon}^2)}, \quad \text{with} \quad \omega \ge 0,$$

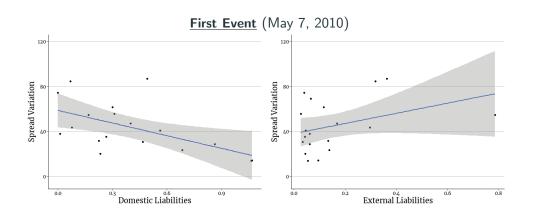
• Functional form + normality of ε \rightarrow constant short-term rate:

$$\mathbb{E}_{s'|s}m(s,s') = e^{-r} = q_a, \quad \text{with} \quad s = \{y, \nu\}$$

- Bond price given by: $q = \mathbb{E}_{s'|s} \left\{ m(s,s')(1-d') \left[\mathcal{C}' + (1-\delta) q' \right] \right\}$
- Bond becomes a worse hedge if u = 1 and gov. tends to default with low ε

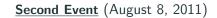
$$\implies$$
 positive risk premium

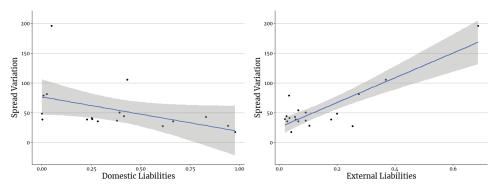
• Even worse hedge w/ contingent coupon

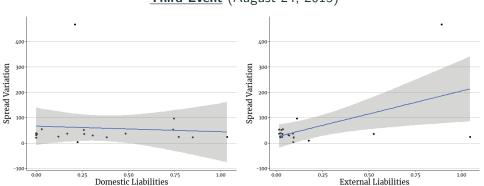

	Reserve Ratio	p-value	Reserve Ratio	p-value
	EL - DL	0.00***	EL - DL	0.01***
	DL - U	0.70	DL - U	0.74
Year FE	No		Yes	

Robustness of our empirical results

	Dependent variable: log (spread)					
	External Liabilities	Domestic Liabilities	Unsterilzed	External Liabilities	Domestic Liabilities	Unsterilized
		High Debt			Low Debt	
	-0.33	-3.47***	-0.24	0.20	-1.26	-1.16
	(1.18)	(0.89)	(1.01)	(1.37)	(0.77)	(1.75)
No. Obs.	1,188	1,188	1,188	1,734	1,734	1,734
		High Spread			Low Spread	
	0.67	-2.92***	-0.98	-0.06	-1.35	-5.52^{***}
	(1.57)	(0.51)	(0.69)	(1.21)	(1.47)	(1.42)
No. Obs.	2,517	2,517	2,517	1,980	1,980	1,980
		High Rate Devaluation			Low Rate Devaluation	
	-0.26	-3.72***	-3.04***	-1.69	-1.29	-0.83
	(1.08)	(0.95)	(0.89)	(2.82)	(1.11)	(2.06)
No. Obs.	2,683	2,683	2,683	1,814	1,814	1,814
		With Deficit			Without Deficit	
	-2.36***	-7.37***	-4.49***	-0.61	-2.20***	-2.33
	(0.50)	(0.85)	(0.83)	(1.94)	(0.83)	(2.31)
No. Obs.	1,166	1,166	1,166	1,471	1,471	1,471
		Dollarizated Countries			Non-Dollarizated Countries	
	-0.41	-4.23***	-3.58***	-2.30*	-3.21***	-1.54
	(0.78)	(1.06)	(1.26)	(1.23)	(0.60)	(0.98)
No. Obs.	2,005	2,005	2,005	1,908	1,908	1,908


Note: Robust standard errors in parentheses. All specifications include country and year fixed effects. *p<0.1; ***p<0.01; ***p<0.01


First event



Second event

Third event

Third Event (August 24, 2015)

→ back