Borrowing in the Shadow of China

Illenin Kondo¹ César Sosa-Padilla² Zach Swaziek³

¹Minneapolis Fed ²University of Notre Dame & NBER ³University of Minnesota

SED 2025 – Copenhangen

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of

Minneapolis, or the Federal Reserve System.

• China has become a major lender to developing countries

• China has become a major lender to developing countries

Table: The Rise of Chinese Lending

	Borrowing	CHN debt over GDP	CHN debt over ext. debt		
	countries	(pct., median)	(bondholders, median)	(all lenders, median)	
2000	15	0.32	0.02	0.00	
2005	61	0.42	0.16	0.01	
2010	95	1.69	0.13	0.10	
2015	102	5.19	0.69	0.27	

Notes: Authors' calculations using dataset on Chinese overseas lending in Horn, Reinhart, and Trebesch (2020).

- China has become a major official lender to developing countries
- Yet, developing nations' debt to China
 - is notoriously hard to estimate
 - gives substantial 'cancellation, acceleration, and stabilization' privileges to China
 - is a growing concern for other lenders

- China has become a major official lender to developing countries
- Yet, developing nations' debt to China
 - is notoriously hard to estimate
 - gives substantial 'cancellation, acceleration, and stabilization' privileges to China
 - is a growing concern for other lenders
- We study the impact of official borrowing from China on quantities and prices of marketable sovereign debt

- China has become a major official lender to developing countries
- Yet, developing nations' debt to China
 - is notoriously hard to estimate
 - gives substantial 'cancellation, acceleration, and stabilization' privileges to China
 - is a growing concern for other lenders
- We study the impact of official borrowing from China on quantities and prices of marketable sovereign debt
 - Welfare implications
 - \blacksquare Optimal exposure to CHN \leftrightarrow geopolitical changes

What we do – Empirics

• We assemble a dataset on CHN funding and restructuring events (Horn et al., 2020) + sov. debt issuance & prices from bond-level data (Bloomberg)

What we do – Empirics

- We assemble a dataset on CHN funding and restructuring events (Horn et al., 2020) + sov. debt issuance & prices from bond-level data (Bloomberg)
- Following CHN lending events,
 - + External borrowing from private lenders falls
 - + Sovereign bond yields decline
- But, during CHN debt restructuring events,
 - Sovereign bond yields increase sharply

What we do - Model

• We build a sovereign default model with long-term debt that can rationalize our stylized facts and inform counterfactuals

What we do – Model

- We build a sovereign default model with long-term debt that can rationalize our stylized facts and inform counterfactuals
- CHN debt modeled as non-defaultable with rollover risk

What we do - Model

- We build a sovereign default model with long-term debt that can rationalize our stylized facts and inform counterfactuals
- CHN debt modeled as non-defaultable with rollover risk
- Debt restructuring, in the model, is akin to both a sudden stop and a negative income shock
 - Default risk on long-term market debt therefore rises

What we do - Model

- We build a sovereign default model with long-term debt that can rationalize our stylized facts and inform counterfactuals
- CHN debt modeled as non-defaultable with rollover risk
- Debt restructuring, in the model, is akin to both a sudden stop and a negative income shock
 - Default risk on long-term market debt therefore rises
- CHN debt inflow leads to deleveraging from market debt and lower yields on sovereign debt
 - \blacksquare "Disciplining" effect \rightarrow can lead to welfare gains

Empirical Findings

Data

Our annual country-level dataset (2000-2017) combines

- Chinese debt restructuring events + estimated debt stocks (Horn, Reinhart, and Trebesch, 2020)
- Long-term bond issuance and yields

(constructed using 45k+ bond observations in Bloomberg)

(this is the main source of unbalanced-ness, due to intermittent coverage and limited capital market participation)

 External debt statistics (World Bank, IDS)

Benchmark estimation

In our benchmark specifications, we estimate

$$m{Y}_{i,t} = lpha + eta \; \mathsf{CHN} \; \mathsf{debt} \; \mathsf{event}_{i,t} + \gamma \; m{X}_{i,t} + arepsilon_{i,t}$$

- *i* represents a country, *t* denotes a year
- $Y_{i,t}$ is an outcome related market debt prices or quantities
- CHN debt event_{*i*,*t*} = 1 if a China debt event (funding or restructuring) occurred in $\{i, t\}$
- $X_{i,t}$ are additional controls incl. GDP growth, FX reserves, lagged DV, time and country FEs

Note: CHN funding event = 1 when inflow from CHN is large (above median change).

Chinese lending and market debt deleveraging

Dep. variable:	$\log(Ext. debt)$		New Bond Issuance		
CHN funding event	-0.183*** (0.0576)		-0.105** (0.0510)		
CHN funding era		-0.124 (0.0845)		-0.143* (0.0745)	
adj. <i>R</i> ² <i>N</i>	0.985 640	0.985 640	0.282 698	0.281 698	

All specs. include country and time FEs. Robust standard errors in parentheses.

st
 $p < 0.10$, st $p < 0.05$, stst $p < 0.01$.

Effect on market-debt prices: the lending discount

Dep. variable:	Long Term Bond Yields				
	level	change	level		
CHN funding event	-0.852***	-0.996***			
	(0.297)	(0.352)			
CHN funding era			-0.497		
			(0.427)		
adj. R^2	0.842	0.243	0.838		
N	299	299	299		
All specs. include country and time FEs. Robust standard					

errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Effect on market-debt prices: the restructuring premium

Dep. variable:	Long Term Bond Yields			
CHN restructuring event	3.220** (1.535)	3.101** (1.524)		
Non CHN restructuring event		2.780*** (0.621)	3.041*** (0.683)	
CHN funding rounds	-0.523*** (0.183)	-0.507*** (0.182)	-0.466** (0.181)	
adj. <i>R</i> ² N	0.850 298	0.852 298	0.845 298	

Country and time FEs included. Robust SEs in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Summary of our stylized facts

- 1. External public debt (held by bondholders) is 10 to 20 percent lower following Chinese lending events
- 2. International sovereign bond issuance is 10 to 20 percent less likely following Chinese lending events

Summary of our stylized facts

- 1. External public debt (held by bondholders) is 10 to 20 percent lower following Chinese lending events
- 2. International sovereign bond issuance is 10 to 20 percent less likely following Chinese lending events
- 3. Sovereign bond yields decline by 80 to 100 bps following Chinese lending events
- 4. Sovereign bond yields increase sharply by almost 300 bps after Chinese debt restructuring events

A Model of Sovereign Debt and Default with CHN Official Debt

Environment

- Small open economy, one good, discrete time t = 0, 1, 2, ...
- Endowment y follows a Markov process

Environment

- Small open economy, one good, discrete time t = 0, 1, 2, ...
- Endowment y follows a Markov process
- Market debt b
 - LT bond promises stream of payments: $\kappa [1, (1 \delta), (1 \delta)^2, ...]$
 - Subject to costly default: income losses + exclusion
 - Lenders: risk-neutral, deep-pocket, international agents

Environment

- Small open economy, one good, discrete time t = 0, 1, 2, ...
- Endowment y follows a Markov process
- Market debt b
 - LT bond promises stream of payments: $\kappa [1, (1 \delta), (1 \delta)^2, ...]$
 - Subject to costly default: income losses + exclusion
 - Lenders: risk-neutral, deep-pocket, international agents
- Debt vis-à-vis China $b_c \in \{L, H\}$ follow a Markov process
 - transitions gov. by random var $a = \{0, 1\}$
 - inflow = transition from L to H
 - outflow = transition from H to L

Chinese debt fluctuations

net flows:
$$z(b_c, a) \equiv \begin{cases} H - L & \text{if } a = 1 \cap b_c = L \\ 0 & \text{if } a = 0 \\ L - H & \text{if } a = 1 \cap b_c = H \end{cases}$$

and

debt positions:
$$b_c'(b_c, a) \equiv \begin{cases} H & \text{if } a = 1 \cap b_c = L \\ L & \text{if } a = 1 \cap b_c = H \\ b_c & \text{otherwise} \end{cases}$$

Government problem: repay (V_0) or default (V_1)

Given a price func. q and exo. state s = (y, a), the gov. solves:

$$V(b, b_c, s) = \max_{d \in \{0,1\}} \left\{ \frac{d}{V_1(b_c, s)} + (1 - d) V_0(b, b_c, s) \right\}$$

$$V_0(b, b_c, s) = \max_{b'} \left\{ u(c) + \beta \mathbb{E}_{s'|s} V(b', b'_c, s') \right\}$$
$$c + \kappa b = y + q(b', b'_c, s) \left[b' - (1 - \delta)b \right] + z(b_c, a)$$

$$egin{aligned} V_1(b_c,s) &= uig(y-\phi(y)+z(b_c,a)ig) \ &+eta\,\mathbb{E}_{s'|s}\,[\, heta\,V(0,b_c',s')+(1- heta)V_1(b_c',s')\,] \end{aligned}$$

Bond prices

The bond price is given by the following functional equation:

$$\begin{split} q(b',b_c',s) &= \frac{1}{1+r} \mathbb{E}_{s'|s} \left\{ \overbrace{\left[1 - \widehat{d}\left(b',b_c',s'\right)\right]}^{\text{repayment}} \right. \\ & \times \left[\kappa + (1-\delta) \underbrace{q\left(\widehat{b}\left(b',b_c',s'\right),b_c'',s'\right)}_{\text{outstanding debt price}} \right] \right\} \end{split}$$

 \hat{d} and \hat{b} denote the future default and borrowing rules that lenders expect the gov. to follow

Functional forms and calibration

- Annual calibration (based on the panel used for empirical results)
- CRRA utility; Income process follows AR(1) in logs
- Quadratic cost of default, φ(y) → 2 params calibrated to match: mean debt (30%) and mean spreads (3.5%)

Functional forms and calibration

- Annual calibration (based on the panel used for empirical results)
- CRRA utility; Income process follows AR(1) in logs
- Quadratic cost of default, $\phi(y) \rightarrow 2$ params calibrated to match: mean debt (30%) and mean spreads (3.5%)
- CHN lending block:

-

	Symbol	Value	Source
Low China debt	L	0.00	Normalization
High China debt	Н	0.05	Max. CHN debt flow $= 5.0\%$
Rollover probability	π_a	0.10	CHN financing freq.

Functional forms and calibration

- Annual calibration (based on the panel used for empirical results)
- CRRA utility; Income process follows AR(1) in logs
- Quadratic cost of default, φ(y) → 2 params calibrated to match: mean debt (30%) and mean spreads (3.5%)
- CHN lending block:

	Symbol	Value	Source
Low China debt	L	0.00	Normalization
High China debt	Н	0.05	Max. CHN debt flow $= 5.0\%$
Rollover probability	π_{a}	0.10	CHN financing freq.

• Rest of parameters: standard calibration

Simulation Results

Statistics	Unconditional	
Market Debt to GDP	30.0	
Market Issuance to GDP	6.0	
Consumption to GDP	99.0	
Spread	3.5	
S.D. Spread	2.2	
Corr(Spread, GDP)	-0.6	
P(Default t+1)	3.0	
Default Frequency	2.6	
S.D. Consumption/S.D. GDP	1.1	

Simulation Results

Statistics	Unconditional	Inflow	Outflow
Market Debt to GDP	30.0	31.0	28.9
Market Issuance to GDP	6.0	2.7	9.0
Consumption to GDP	99.0	101.0	96.6
Spread	3.5	3.1	4.0
S.D. Spread	2.2	1.8	2.5
Corr(Spread, GDP)	-0.6	-0.6	-0.7
$P(Default t{+}1)$	3.0	2.1	3.8
Default Frequency	2.6	2.9	2.2
S.D. Consumption/S.D. GDP	1.1	1.0	1.3

Consistent with empirical evidence:

- \blacksquare Effect on quantities \rightarrow substitution away from mkt debt
- \blacksquare Effect on prices \rightarrow lower spreads on inflows; higher spreads on outflows

CHN funding shocks: spread-debt menus

CHN funding shocks: spread-debt menus

Having high CHN debt worsens borrowing opportunities

CHN funding shocks: spread-debt menus

Having high CHN debt worsens borrowing opportunities

But has a disciplining effect: country delevers and pays lower spreads in eqm 16/22

Taking stock

- Developed a quantitative model which can account for stylized facts
- Key mechanisms: rollover risk + debt substitution
- Disciplining effect: when getting an inflow, country lowers mkt debt + preserves mkt access to finance upcoming outflow
Taking stock

- Developed a quantitative model which can account for stylized facts
- Key mechanisms: rollover risk + debt substitution
- Disciplining effect: when getting an inflow, country lowers mkt debt + preserves mkt access to finance upcoming outflow
- Welfare effects: state contingent ↔ beneficial terms in inflow; increased risk in outflows

Taking stock

- Developed a quantitative model which can account for stylized facts
- Key mechanisms: rollover risk + debt substitution
- Disciplining effect: when getting an inflow, country lowers mkt debt + preserves mkt access to finance upcoming outflow
- Welfare effects: state contingent ↔ beneficial terms in inflow; increased risk in outflows
- Robust to:
 - 1. Interest on CHN debt
 - 2. 'Asymmetric' CHN debt process
 - 3. Allowing default on CHN

Taking stock

- Developed a quantitative model which can account for stylized facts
- Key mechanisms: rollover risk + debt substitution
- Disciplining effect: when getting an inflow, country lowers mkt debt + preserves mkt access to finance upcoming outflow
- Welfare effects: state contingent ↔ beneficial terms in inflow; increased risk in outflows
- Robust to:
 - 1. Interest on CHN debt
 - 2. 'Asymmetric' CHN debt process
 - 3. Allowing default on CHN
- Next: use model to study different risk-scenarios

• We use our model to assess the quantitative implications of this type of geopolitical risk

- Model extension: exogenous prob. that CHN severs ties w/ the country
 - If that happens, b_c has to be paid off immediately
 - And country gets 'cut off' from CHN funds permanently

• We use our model to assess the quantitative implications of this type of geopolitical risk

- Model extension: exogenous prob. that CHN severs ties w/ the country
 - If that happens, b_c has to be paid off immediately
 - And country gets 'cut off' from CHN funds permanently
 - \blacksquare After 'Retrenchment shock' \rightarrow model becomes standard sov. debt framework
 - \blacksquare Setting this prob to zero \rightarrow baseline model

Dynamics of a Retrenchment Shock

Dynamics of a Retrenchment Shock

• Costly adjustments: \downarrow consumption, \uparrow defaults, spreads

How Exposed Should the Country be to CHN funding? •••••

How Exposed Should the Country be to CHN funding? •••••

How Exposed Should the Country be to CHN funding? •••••

- Higher mkt debt, higher ex-ante optimal exposure
- Higher retrenchment risk, lower ex-ante optimal exposure

Take-away from introducing Retrenchment Risk

- \bullet We live in turbulent times \leftrightarrow High risk of sharp geopolitical re-alignments
- Changes in Retrench. risk induce large changes in the optimal exposure to CHN

Take-away from introducing Retrenchment Risk

- We live in turbulent times \leftrightarrow High risk of sharp geopolitical re-alignments
- Changes in Retrench. risk induce large changes in the optimal exposure to CHN

Let me speculate about Argentina

- long period of close geopol. proximity to CHN (Peronist governments) \rightarrow increases its exposure
- sudden (and unanticipated) domestic political shock (swing to right-wing policies under Milei presidency)
- exposed to higher risk of having to pay down non-trivial Chinese loans

Take-away from introducing Retrenchment Risk

- We live in turbulent times \leftrightarrow High risk of sharp geopolitical re-alignments
- Changes in Retrench. risk induce large changes in the optimal exposure to CHN

Let me speculate about Argentina

- long period of close geopol. proximity to CHN (Peronist governments) \rightarrow increases its exposure
- sudden (and unanticipated) domestic political shock (swing to right-wing policies under Milei presidency)
- exposed to higher risk of having to pay down non-trivial Chinese loans
- **More general point:** cautionary tale for EMEs with volatile political environments and that have so far relied heavily on CHN lending

Concluding remarks

- We document significant effects of Chinese debt events sovereign debt prices and its dynamics
- We use a standard sovereign debt model to rationalize these facts
- CHN debt has a strong disciplining effect: when getting an inflow, country lowers mkt debt + preserves mkt access to finance upcoming outflow
- Explore the implications of a particular form of geopolitical risk: Chinese Retrenchment
 - Costly adjustments
 - Cautionary tale for countries relying 'too much' on CHN lending

THANK YOU!

Appendix

Special Clauses

Sample No Paris Clause

The Borrower shall under no circumstances bring or agree to submit the obligations under the Finance Documents to the Paris Club for restructuring or into any debt reduction plan of the IMF, the World Bank, any other multilateral international financial institution to which the State is a part of, or the Government of the PRC without the prior written consent of the Lender.

"How China Lends: A Rare Look into 100 Debt Contracts with Foreign Governments", Gelpern et al., AidData, 2021

Special Clauses

Sample Collateral Clause

The Borrower shall under no circumstances bring or agree to submit the obligations under the Finance Documents to the Paris Club for restructuring or into any debt reduction plan of the IMF, the World Bank, any other multilateral international financial institution to which the State is a part of, or the Government of the PRC without the prior written consent of the Lender.

"How China Lends: A Rare Look into 100 Debt Contracts with Foreign Governments", Gelpern et al., AidData, 2021

Countries with Debt data

World Bank – External debt held by bondholders

AGO, ALB, ARG, ARM, AZE, BGR, BIH, BLR, BLZ, BOL, BRA, CIV, CMR, COD, COG, COL, CRI, DMA, DOM, ECU, EGY, ETH, FJI, GAB, GEO, GHA, GRD, GUY, HND, IDN, IND, JAM, JOR, KAZ, KEN, LAO, LBN, LKA, MAR, MDV, MEX, MKD, MNE, MNG, MOZ, NGA, PAK, PER, PHL, PRY, RUS, RWA, SEN, SRB, TJK, TUN, TUR, UGA, UKR, VEN, VNM, ZAF, ZMB, ZWE

Countries with Debt data

Bloomberg – Issued 10+ year bonds

AGO, ALB, ARG, ARM, AZE, BGR, BHS, BLR, BLZ, BOL, BRA, BRB, CHL, CIV, CMR, COG, COL, CRI, DOM, ECU, EGY, ETH, GAB, GEO, GHA, GRC, GRD, HND, HRV, IDN, IRQ, JAM, JOR, KAZ, KEN, LAO, LBN, LKA, MAR, MEX, MKD, MNE, MNG, MOZ, NAM, NGA, OMN, PAK, PAN, PER, PHL, POL, PRY, ROU, RUS, RWA, SEN, SRB, SVN, SYC, TTO, TUR, UKR, URY, VEN, VNM, ZAF, ZMB

CHN lending and external debt: deleveraging

	(1)	(2)	(3)	(4)	(5)	(6)		
		log External debt held by bondholders						
_	level	level	change	change	change	level		
CHN funding event	-0.183***	-0.129***	-0.177***	-0.136***				
	(0.0576)	(0.0400)	(0.0618)	(0.0404)				
CHN funding event (change)					-0.159*** (0.0409)			
CHN funding era						-0.124		
						(0.0845)		
adj. <i>R</i> ²	0.985	0.989	0.059	0.069	0.080	0.985		
Ν	640	583	640	583	640	640		

CHN lending and debt issuance: \downarrow prob. of new issuance

	(1)	(2)	(3)	(4)	(5)	(6)
		New Bond	Issuance o	n Internatio	nal Markets	
	level	level	change	change	change	level
CHN funding event	-0.105**	-0.120*	-0.167**	-0.234***		
	(0.0510)	(0.0699)	(0.0668)	(0.0891)		
CHN funding event					-0.123***	
(change)					(0.0449)	
CHN funding event era						-0.143*
_						(0.0745)
adj. R^2	0.282	0.286	0.002	0.008	0.004	0.281
Ν	698	652	698	652	698	698

CHN funding events and and market-debt prices: \downarrow yields \frown

	(1)	(2)	(3)	(4)	(5)	(6)		
		Long Term (10 $+$ years) Bond Yields						
	level	level	change	change	change	level		
CHN funding event	-0.852***	-0.837**	-0.996***	-0.953**				
	(0.297)	(0.414)	(0.352)	(0.480)				
CHN funding event					-0.391*			
(change)					(0.225)			
CHN funding era						-0.497		
						(0.427)		
adj. R ²	0.842	0.846	0.243	0.248	0.224	0.838		
Ν	299	275	299	275	299	299		

	Long Term (10+ years) Bond Yields							
	(1)	(2)	(3)	(4)	(5)	(6)		
CHN restructuring event	3.220**	3.101**						
	(1.535)	(1.524)						
Non CHN restructuring event		2.780***	3.041***					
		(0.621)	(0.683)					
CHN restructuring event				3.544***	3.661***			
(lagged)				(1.203)	(1.209)			
Non CHN restructuring event					3.572	3.502		
(lagged)					(2.396)	(2.428)		
CHN funding rounds	-0.523***	-0.507***	-0.466**	-0.495***	-0.456***	-0.443***		
	(0.183)	(0.182)	(0.181)	(0.184)	(0.171)	(0.170)		
adj. <i>R</i> ²	0.850	0.852	0.845	0.845	0.854	0.849		
Ν	298	298	298	298	298	298		

A Markov Perfect Equilibrium is characterized by

- 1. a default rule \hat{d} and a borrowing rule \hat{b} ,
- 2. a bond price function q,

such that:

(a) given \hat{d} and \hat{b} , the bond price function q is given by the bond prices equation ; and

(b) the default rule \hat{d} and borrowing rule \hat{b} solve the dynamic programming problem corresponding to V, V_0 , V_1 , when the government can trade bonds at q.

Calibration	Symbol	Value	Source	► back
Default income cost - Intercept	λ_0	0.11	Avg. market debt $= 30\%$	
Default income cost - Slope	λ_1	0.945	Avg. spread = 3.55%	
Risk aversion coefficient	γ	2.00	Standard	
Risk-free rate	r	0.04	Standard	
Discount factor	eta	0.90	Standard	
Market re-entry probability	θ	0.20	$\mathbb{E}(exclusion) = 5$ years	
Debt duration	δ	0.168	Debt duration $=$ 5 years	
Bond coupon	κ	$\frac{r+\delta}{1+r}$	Risk-free bond price $= \frac{1}{1+r}$	
Income process - autocorr.	ho	0.784	GDP fluctuations (PWT)	
Innovations to y - std dev	σ_ϵ	0.033	GDP fluctuations (PWT)	
Income process - avg	μ	$-\frac{1}{2}\sigma_{\epsilon}^2$	$\mathbb{E}(y)=1$	
Low China debt	L	0.00	Normalization	
High China debt	Н	0.05	Max. CHN debt flow $= 5.0\%$	%
Rollover probability	π_a	0.10	CHN financing freq.	

Simulation results

Statistics	Unconditional	Inflow	Outflow	No f	-low:
				$b_c = L$	$b_c = H$
Market Debt to GDP	29.97	31.04	28.93	31.04	28.92
Market Issuance to GDP	5.99	2.71	8.96	6.17	5.83
Consumption to GDP	98.96	101.04	96.56	98.87	99.08
Spread	3.54	3.06	4.0	3.74	3.35
S.D. Spread	2.2	1.8	2.45	2.35	2.04
Corr(Spread, GDP)	-0.63	-0.62	-0.66	-0.62	-0.65
$P(Default t{+}1)$	2.97	2.14	3.76	3.36	2.59
Default Frequency	2.59	2.94	2.24	2.94	2.24
S.D. Consumption/S.D. GDP	1.14	0.99	1.29	1.13	1.12

Robustness #1: Interest on Chinese Debt

• In the benchmark model, the government pays no interest on the Chinese debt

• **Question**: How do our results change if the Chinese debt contract requires coupon payments?

 Extension: In periods of neither inflows nor outflows (a = 0), and when entering Chinese position is high (b_c = H), the government must pay a coupon payment of H × r

Simulated Statistics: Interest on Chinese Debt

▶ back

Statistics	Unconditional	Inflow	Outflow	No I	-low:
				$b_c = L$	$b_c = H$
Market Debt to GDP	30.01	31.03	29.01	31.03	29.01
Market Issuance to GDP	6.0	2.64	8.94	6.16	5.88
China Debt to GDP	2.52	0.0	4.98	0.0	4.98
Net Flow from China to GDP	-0.01	4.97	-4.98	0.0	0.0
Consumption to GDP	98.87	100.98	96.53	98.87	98.9
Spread	3.56	3.05	4.01	3.73	3.39
S.D. Spread	2.22	1.79	2.47	2.34	2.08
Corr(Spread, GDP)	-0.63	-0.61	-0.66	-0.62	-0.65
$P(Default t{+}1)$	2.98	2.09	3.8	3.36	2.62
Default Frequency	2.6	2.94	2.26	2.94	2.26
S.D. Consumption/S.D. GDP	1.14	0.99	1.29	1.13	1.12

• Takeaway: A coupon payment has very little impact on the simulated statistics

Robustness #2: Asymmetric Chinese Debt Flows

• In the benchmark model, the probability of receiving an inflow given a low Chinese debt position equals the probability of receiving an outflow given a high Chinese debt position

• **Question**: How do the simulated statistics change when the Chinese debt flows process is asymmetric?

• **Extension**: The probability of a Chinese outflow, conditional on outstanding Chinese debt, is now 0.25 instead of 0.1

Simulated Statistics: Asymmetric Chinese Debt Flows

→ back

Statistics	Unconditional	Inflow	Outflow	No F	-low:
				$b_c = L$	$b_c = H$
Market Debt to GDP	29.97	30.84	27.82	30.84	27.82
Market Issuance to GDP	5.99	2.3	9.09	6.15	5.68
China Debt to GDP	1.45	0.0	4.98	0.0	4.98
Net Flow from China to GDP	-0.01	4.97	-4.98	0.0	0.0
Consumption to GDP	98.91	100.74	96.95	98.91	98.99
Spread	3.54	3.03	3.79	3.68	3.22
S.D. Spread	2.21	1.74	2.32	2.31	1.92
Corr(Spread, GDP)	-0.63	-0.62	-0.67	-0.63	-0.65
P(Default t+1)	2.97	1.95	3.4	3.29	2.23
Default Frequency	2.59	2.85	1.92	2.87	1.89
S.D. Consumption/S.D. GDP	1.14	0.98	1.29	1.13	1.12

• Relative to the benchmark, market debt is lower when there is an outflow, as the government has fewer periods to lever back up after the last inflow

Robustness #3: Default on Market and Chinese Debt

• In the benchmark model, the government cannot default on outstanding Chinese debt; any inflows must be eventually repaid

• **Question**: To what extent does the option to default on outstanding Chinese debt (jointly with market debt) weaken its "market disciplining" effect?

• **Extension**: A government in default (whether they defaulted today or in the past) cannot receive Chinese debt inflows and does not pay back any outstanding Chinese debt

Simulated Statistics: Default on Market and Chinese Debt •••••

Statistics	Unconditional	Inflow	Outflow	No F	-low:
				$b_c = L$	$b_c = H$
Market Debt to GDP	28.99	29.08	28.93	28.99	28.97
Market Issuance to GDP	5.82	2.39	9.21	6.38	5.22
China Debt to GDP	2.12	0.0	4.94	0.0	4.95
Net Flow from China to GDP	0.08	4.99	-4.94	0.0	0.0
Consumption to GDP	99.09	101.13	96.9	99.51	98.47
Spread	3.72	4.19	3.44	3.52	3.95
S.D. Spread	2.38	3.74	1.54	2.14	2.46
Corr(Spread, GDP)	-0.63	-0.56	-0.8	-0.57	-0.76
P(Default t+1)	3.1	4.31	2.24	2.69	3.57
Default Frequency	2.69	0.0	0.0	2.26	4.06
S.D. Consumption/S.D. GDP	1.13	1.0	1.26	1.13	1.14

• Intuitively, relative to the benchmark model, the government is significantly more likely to default when it has outstanding Chinese debt ($b_c = H$)
Spread-Debt Menus at Mean Income: Default on Chinese Debt

• back 40 / 22

Welfare

Note: A positive number means that agents prefer the benchmark economy.

Dynamics around CHN funding events

▶ back

Welfare gains from H-star

