Reserve Accumulation, Macroeconomic Stabilization and Sovereign Risk

Javier Bianchi¹ César Sosa-Padilla²

¹Minneapolis Fed
²University of Notre Dame & NBER

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Motivation

Data: large holdings of int’l reserves, particularly for countries w/ currency pegs

Traditional argument (Krugman, 79; Flood and Garber, 84):
 • Peg \rightarrow cannot use seigniorage as source of revenue
 • Reserves allow to sustain peg (even w/ primary deficits)
 • Reserves are needed

Our paper:
 • Theory based on the desirability to hold reserves to manage macroeconomic stability under sovereign risk concerns
This Paper

A theory of reserve accum. based on macro stabilization and sovereign risk

- Model of sovereign default and reserve accumulation w/ nominal rigidities

Intuition:

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- Under “fixed” and w/ nominal wage rigidity: $c \downarrow \rightarrow$ recession \rightarrow further $c \downarrow$
- Having reserves: gov. can smooth the $c \downarrow$ and mitigate the recession

- Why not just borrow? These are precisely the states in which spreads \uparrow
- Reserves give a “hedge” against having to roll-over the debt in bad times and free up resources to mitigate the recession
Key insight: when output is partly demand determined, larger gross positions help smooth aggregate demand, reduce severity of recessions and facilitate repayment

Quantitatively: Macro-stabilization is essential to account for observed reserve levels
- Fixers hold 16% of GDP, floaters 7%

Policy: simple and implementable rules for res. accum. can deliver significant gains
Two main related branches of the literature:

Reserve accumulation: Aizenmann and Lee (2005); Jeanne and Ranciere (2011); Durdu, Mendoza and Terrones (2009); Alfaro and Kanczuk (2009), Bianchi, Hatchondo and Martinez (2018); Hur and Kondo (2016); Amador et al. (2018); Arce, Bengui and Bianchi (2019); Bocola and Lorenzoni (2018); Cespedes and Chang (2019)

Sovereign default models with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue (2018); Bianchi, Ottonello and Presno (2016); Arellano, Bai and Mihalache (2018); Bianchi and Mondragon (2018)
Main Elements of the Model

- Small open economy (SOE) with $T - NT$ goods:
 - Stochastic endowment for tradables y^T
 - Non-tradables produced with labor: $y^N = F(h)$

- Wages are downward rigid in domestic currency (SGU, 2016)
 - With fixed exchange rate, $\pi^* = 0$ and L.O.P. \Rightarrow wages are rigid in tradable goods $w \geq \bar{w}$

- Government issues non-contingent long-duration bonds (b) and saves in one-period risk free assets (a), all in units of T

- Default entails one-period exclusion and utility loss $\psi_d(y^T)$

- Risk averse foreign lenders \rightarrow “risk-premium shocks”
Households

\[
\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ u(c_t) \}
\]

\[
c = C(c^T, c^N) = [\omega(c^T)^{-\mu} + (1 - \omega)(c^N)^{-\mu}]^{-1/\mu}
\]

- Budget constraint in units of tradables
 \[
c^T_t + p^N_t c^N_t = y^T_t + \phi^N_t + w_t h^s_t - \tau_t
\]

- \(\phi^N_t\): firms’ profits; \(\tau_t\): taxes. No direct access to external credit.
- Endowment of hours \(\bar{h}\), but \(h^s_t < \bar{h}\) when \(w \geq \bar{w}\) binds.
- Optimality
 \[
p^N_t = \frac{1 - \omega}{\omega} \left(\frac{c^T_t}{c^N_t} \right)^{1+\mu}
\]
Firms

• Maximize profits given by

\[\phi_t^N = \max_{h_t} p_t^N F(h_t) - w_t h_t \]

• \(p_t^N, w_t \): price of non-tradables and wages in units of tradables

• Firms’ optimality condition is

\[p_t^N F'(h_t) = w_t \]
Equilibrium in the Labor Market

Assume: \(F(h) = h^\alpha \) with \(\alpha \in (0, 1] \).

Optimality conditions imply:

\[
\mathcal{H}(c^T, w) = \left[\frac{1 - \omega}{\omega} \frac{\alpha}{w} \right]^{1/(1+\alpha\mu)} (c^T)^{1+\mu}/1+\alpha\mu
\]

Note: \(\frac{\partial \mathcal{H}}{\partial c^T} > 0 \)

Equilib. employment =

\[
\begin{cases}
\mathcal{H}(c^T, \bar{w}) & \text{for } w = \bar{w} \\
\bar{h} & \text{for } w > \bar{w}
\end{cases}
\]
Asset/Debt Structure

- Long-term bond:
 - Bond pays \(\delta [1, (1 - \delta), (1 - \delta)^2, (1 - \delta)^3, ...] \)
 - Law of motion for bonds \(b_{t+1} = b_t(1 - \delta) + i_t \)
 - price is \(q \)

- Risk-free one-period asset which pays one unit of consumption
 - price is \(q_a \)

- Government’s budget constraint if **repay**:

 \[
 q_a a_{t+1} + b_t \delta = \tau_t + a_t + q_t \left(b_{t+1} - (1 - \delta) b_t \right)
 \]

 \(i_t : \text{debt issuance} \)

- Government’s budget constraint in **default**:

 \[
 q_a a_{t+1} = \tau_t + a_t
 \]
Foreign Investors

- Competitive, deep-pocketed foreign lenders, subject to “risk-premium” shocks:
 - SDF: $m(s, s')$ with $s = \{y^T, \nu\}$

- Not essential for the analysis, but helps to capture **global factors** and match spread dynamics

- Formulation follows Vasicek (77), constant r:
 \[
 q_a = \mathbb{E}_{s'|s} m(s, s') = e^{-r}
 \]

- Bond price given by:
 \[
 q = \mathbb{E}_{s'|s} \{ m(s, s')(1 - d') [\delta + (1 - \delta) q'] \}
 \]
 \[
 d' = \hat{d}(a', b', s'), \quad q' = q(a'', b'', s')
 \]
Recursive Problem

\[V(b, a, s) = \max_{d \in \{0, 1\}} \left\{ (1 - d)V^R(b, a, s) + dV^D(a, s) \right\} \]

Value of repayment:

\[V^R(b, a, s) = \max_{b', a', h \leq h, c^T} \left\{ u(c^T, F(h)) + \beta \mathbb{E}_{s'|s}[V(b', a', s')] \right\} \]

subject to

\[c^T + qa' + \delta b = a + y^T + q(b', a', s)(b' - (1 - \delta)b) \]

\[h \leq \mathcal{H}(c^T, \bar{w}) \]

\[\mathcal{H}(c^T, \bar{w}) \rightarrow \text{summarizes implementability const. from labor mkt & wage rigidity} \]
Value of default

- Total repudiation, utility cost of default, 1-period exclusion
- Keep a and choose a'

$$V^D(a, s) = \max_{c^T, h \leq \bar{h}, a'} \left\{ u \left(c^T, F(h) \right) - \psi_d \left(y^T \right) + \beta \mathbb{E}_{s'|s} \left[V(0, a', s') \right] \right\}$$

subject to

$$c^T + q_a a' = y^T + a$$

$$h \leq \mathcal{H}(c^T, \overline{w})$$
Optimal Portfolio: gains from borrowing to buy reserves

Perturbation: issue additional unit of debt to buy reserves. Keep \bar{c}. From tomorrow onward, optimal policy.

\[
\left(\frac{\partial q}{\partial b} \right) \mathbb{E}_{s'} | s [u'_{T} + \xi' \mathcal{H}_{T}'] = \mathbb{E}_{s'} | s [1-d'] \left\{ \mathbb{E}_{s'|s,d'=0} [\delta + (1 - \delta)q'] \mathbb{E}_{s'|s,d'=0} [u'_{T} + \xi' \mathcal{H}_{T}'] + \text{COV}_{s'|s,d'=0} (\delta + (1 - \delta)q', u'_{T} + \xi' \mathcal{H}_{T}') \right\}
\]

Costs are lower in bad times: low q', high $u'_{T} + \xi' \mathcal{H}_{T}' \rightarrow$ hedging benefit

With 1-period debt ($\delta = 1$): $\text{COV}_{s'|s,d'=0} (\delta + (1 - \delta)q', u'_{T} + \xi' \mathcal{H}_{T}') = 0$
Optimal Portfolio: gains from borrowing to buy reserves

Covariance: negative (macro-stabilization hedging) and upward sloping
Benefits of reserve accumulation

We want to highlight two benefits of reserves:

i. Higher reserves can reduce future unemployment.

ii. Reserve accumulation may improve bond prices.

Exercise:

- Fix a point in the s.s. and a given level of consumption \bar{c}.
- Look at alternative a', and find b' that ensures $c = \bar{c}$.

Next-period unemployment for given \((a', b')\): mean and std. dev.

Note: higher reserves **reduce** future unemployment
Borrowing to save may improve bond prices

Intuition: Reserves increase V^R and V^D. If gov. is borrowing constrained (high unemployment), effect on V^R may dominate effect on V^D.
Results: default regions

Debt

Reserves

Flex
• Nominal rigidities *increase* default incentives
• Gross positions matter for default incentives
Quantitative Analysis – Functional forms

- Calibrate to the average of a panel of 22 EMEs (1990–2015).
- Benchmark = economy with nominal rigidities.
- 1 model period = 1 year.

Utility function:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$, with $\gamma \neq 1$

Utility cost of defaulting:

$$\psi_d(y^T) = \psi_0 + \psi_1 \log(y^T)$$

 Tradable income process:

$$\log(y_t^T) = (1 - \rho)\mu_y + \rho \log(y_{t-1}^T) + \epsilon_t$$

with $|\rho| < 1$ and $\epsilon_t \sim N(0, \sigma^2_\epsilon)$
Quantitative Analysis – Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Risk-free rate</td>
<td>0.04</td>
</tr>
<tr>
<td>α</td>
<td>Labor share in the non-tradable sector</td>
<td>0.75</td>
</tr>
<tr>
<td>β</td>
<td>Domestic discount factor</td>
<td>0.90</td>
</tr>
<tr>
<td>π_{LH}</td>
<td>Prob. of transitioning to high risk premium</td>
<td>0.15</td>
</tr>
<tr>
<td>π_{HL}</td>
<td>Prob. of transitioning to low risk premium</td>
<td>0.8</td>
</tr>
<tr>
<td>σ_ε</td>
<td>Std. dev. of innovation to $\log(y_T)$</td>
<td>0.045</td>
</tr>
<tr>
<td>ρ</td>
<td>Autocorrelation of $\log(y_T)$</td>
<td>0.84</td>
</tr>
<tr>
<td>μ_y</td>
<td>Mean of $\log(y_T)$</td>
<td>$-\frac{1}{2}\sigma_\varepsilon^2$</td>
</tr>
<tr>
<td>δ</td>
<td>Coupon decaying rate</td>
<td>0.2845</td>
</tr>
<tr>
<td>$1/(1+\mu)$</td>
<td>Intratemporal elast. of subs.</td>
<td>0.44</td>
</tr>
<tr>
<td>γ</td>
<td>Coefficient of relative risk aversion</td>
<td>2.273</td>
</tr>
<tr>
<td>h</td>
<td>Time endowment</td>
<td>1</td>
</tr>
</tbody>
</table>

Parameters set by simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>Share of tradables</td>
<td>0.4</td>
</tr>
<tr>
<td>ψ_0</td>
<td>Default cost parameter</td>
<td>3.6</td>
</tr>
<tr>
<td>ψ_1</td>
<td>Default cost parameter</td>
<td>22</td>
</tr>
<tr>
<td>κ_H</td>
<td>Pricing kernel parameter</td>
<td>15</td>
</tr>
<tr>
<td>\bar{w}</td>
<td>Lower bound on wages</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Results – road map

1. Simulations moments.
2. Welfare exercises.
3. Simple, implementable reserve accumulation rules.
4. Inflation targeting variant.
5. Costly depreciations.
Results: data and simulation moments

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean debt (b/y)</td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>Mean r_s</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Δr_s w/ risk-prem. shock</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ΔUR around crises</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Mean y^T/y</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Non-Targeted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(c)/\sigma(y)$</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>$\sigma(r_s)$ (in %)</td>
<td>1.6</td>
<td>3.1</td>
</tr>
<tr>
<td>$\rho(r_s, y)$</td>
<td>-0.3</td>
<td>-0.6</td>
</tr>
<tr>
<td>$\rho(c, y)$</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean Reserves (a/y)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Mean Reserves/Debt (a/b)</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$\rho(a/y, r_s)$</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
</tbody>
</table>
Results: data and simulation moments

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model Benchmark</th>
<th>Model Flexible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean debt (b/y)</td>
<td>45</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Mean (r_s)</td>
<td>2.9</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>(\Delta r_s) w/ risk-prem. shock</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>(\Delta UR) around crises</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mean (y^T/y)</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Non-Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(c)/\sigma(y))</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>(\sigma(r_s)) (in %)</td>
<td>1.6</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>(\rho(r_s, y))</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.8</td>
</tr>
<tr>
<td>(\rho(c, y))</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean Reserves (a/y)</td>
<td>16</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Mean Reserves/Debt (a/b)</td>
<td>35</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>(\rho(a/y, r_s))</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
Reserves in the data: fixed vs. flex
• Nominal rigidities decrease welfare by around 0.9% and are costlier if cannot accumulate reserves
• Having access to reserves is welfare improving, especially w/ nominal rigidities
Simple and implementable reserve accumulation rules

- Policy discussion: what constitutes an “adequate” amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables
- Compare it against:
 - fully optimizing model
 - other reserve accumulation rules (Greenspan-Guidotti)

\[
a_{t+1} = \beta_0 + \beta_{\text{debt}} b_t + \beta_{\text{spr}} \text{spread}_t + \beta_{\text{res}} a_t + \beta_y y_t^T
\]

\[
\beta_0 = 0.336, \quad \beta_{\text{debt}} = 2.535, \quad \beta_{\text{spread}} = -1.69, \quad \beta_{\text{res}} = 0.422, \quad \beta_y = 0.418.
\]

1 p.p. increase in spreads, controlling for other factors, should lead to reserves declining 1.69% of mean (tradable) output (roughly 0.70% of GDP)
Simple and Implementable Reserve Accumulation Rules

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Best Rule</th>
<th>Greenspan-Guidotti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean debt ((b/y))</td>
<td>44</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>Mean (r_s)</td>
<td>2.9</td>
<td>2.8</td>
<td>2.4</td>
</tr>
<tr>
<td>(\Delta r_s) w/ risk-prem. shock</td>
<td>2.0</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>(\Delta UR) around crises</td>
<td>2.0</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Mean (y^T/y)</td>
<td>41</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>Non-Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(c)/\sigma(y))</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(\sigma(r_s)) (in %)</td>
<td>3.1</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>(\rho(r_s, y))</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>(\rho(c, y))</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean Reserves ((a/y))</td>
<td>16</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Mean Reserves/Debt ((a/b))</td>
<td>35</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>(\rho(a/y, r_s))</td>
<td>-0.4</td>
<td>-0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Reserves/S.T. liabilities</td>
<td>112</td>
<td>139</td>
<td>100</td>
</tr>
<tr>
<td>Welfare gain (vs. No-Reserves)</td>
<td>0.18</td>
<td>0.07</td>
<td>-0.22</td>
</tr>
</tbody>
</table>
Inflation Targeting

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Fixed Exchange Rate</th>
<th>Inflation Targeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean debt (b/y)</td>
<td>45</td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td>Mean r_s</td>
<td>2.9</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Δr_s w/ risk-prem. shock</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Δ UR around crises</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean y^T/y</td>
<td>41</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Non-Targeted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(c)/\sigma(y)$</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>$\sigma(r_s)$ (in %)</td>
<td>1.6</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>$\rho(r_s, y)$</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>$\rho(c, y)$</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean Reserves (a/y)</td>
<td>16</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Mean Reserves/Debt (a/b)</td>
<td>35</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>$\rho(a/y, r_s)$</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

Key: some form of monetary inflexibility is enough to create demand for reserves.
Costly one-time depreciations

- Implication of the model: countries with a lower degree of exchange rate flexibility find it optimal to use a larger portion of the reserves to deal with shocks.

- **Suitable episode:** GFC. Notable decline in the accumulation of reserves and a large dispersion in depreciation rates across countries.

- Ask whether in the cross-section, the larger drop in reserves was associated with a lower depreciation in the exchange rate. Answer: yes.

- Does the model predict something similar?
Costly one-time depreciations

Consider a variant of the model with flexible e but costly depreciations

$$u(c^T, F(h)) - \kappa(y^T) - \Phi \left(\frac{e - \bar{e}}{\bar{e}} \right), \quad \Phi(0) = 0 \text{ and } \Phi'(0) = 0$$

Exercise:

- Focus on the response to a negative income shock and consider a one-time adjustment cost.
- Economy under fix, avg. (b, a) and hit by $\downarrow y$ such that spreads $\uparrow 300$ bps.
- How much reserves are used as a function of Φ?

Result:

- As $\Phi \downarrow$ we see a higher depreciation rate and a lower decline in reserves.
- In line with data: a gov. that depreciates more doesn’t use as many reserves when hit by a $(-)$ shock.
Costly one-time depreciations

In line w/ data: a gov. that depreciates more doesn’t use as many reserves when hit by a negative shock.
Conclusions

• Provided a theory of reserve accum. for macro-stabilization and sovereign risk
• Reserves help reduce future unemployment risk and may improve bond prices
• Aggregate demand effects essential to account for observed reserves in the data
• Simple and implementable rules for res. accum. can deliver significant gains
• Agenda:
 • Equilibrium Multiplicity
 • Temptation to abandon pegs—how reserves can help
THANKS!
Massive holdings of international reserves, particularly for countries with fixed exchange rates
Over the past 20 years massive increase in reserves around the world, specially EMEs.

(from Amador, Bianchi, Bocola and Perri, 2018)
Reserve accumulation – Regressions

Dependent variable: $\log(\text{Reserves}/y)$

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERV</td>
<td>-0.647^*</td>
<td>-0.656^{**}</td>
<td>-0.662^{**}</td>
<td>-0.281^*</td>
<td>-0.206^*</td>
</tr>
<tr>
<td></td>
<td>(0.367)</td>
<td>(0.332)</td>
<td>(0.334)</td>
<td>(0.152)</td>
<td>(0.121)</td>
</tr>
<tr>
<td>$\log(\text{Debt}/y)$</td>
<td>0.245</td>
<td>0.250</td>
<td>0.349</td>
<td>0.324</td>
<td>(0.214)</td>
</tr>
<tr>
<td>\hat{y}</td>
<td>-0.069</td>
<td>1.158</td>
<td>1.389</td>
<td>(1.227)</td>
<td>(1.326)</td>
</tr>
<tr>
<td>$\log(\text{Spread})$</td>
<td>-0.155</td>
<td>-0.063</td>
<td>(0.095)</td>
<td>(0.093)</td>
<td></td>
</tr>
<tr>
<td>r_{world}</td>
<td>-0.119^{***}</td>
<td>(0.038)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Number of countries: 22
- Observations: 459
- R^2: 0.02
- F Statistic: 7.28

Note: All explanatory variables are lagged one period. \hat{y} is the cyclical component of GDP. All specifications include country fixed effects. Robust standard errors (clustered at the country level) are reported in parentheses. * $p<0.1$; ** $p<0.05$; *** $p<0.01$.

(Back to motivation) (Back to simulations)
We use the IMF Classif. of Exch. Rate Arrangements (fixed = 1 and 2)

We follow Kondo and Hur (2016) and focus on 22 EMEs:

<table>
<thead>
<tr>
<th>Argentina</th>
<th>India</th>
<th>Poland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Indonesia</td>
<td>Romania</td>
</tr>
<tr>
<td>Chile</td>
<td>Malaysia</td>
<td>Russia</td>
</tr>
<tr>
<td>China</td>
<td>Mexico</td>
<td>South Africa</td>
</tr>
<tr>
<td>Colombia</td>
<td>Morocco</td>
<td>South Korea</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Pakistan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Egypt</td>
<td>Peru</td>
<td>Turkey</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plot of the Labor Market Equilibrium

- c_{low}^T
- c_{high}^T
- w_B
- \bar{w}
- h_A
- \bar{h}
• Pricing kernel: a function of innovation to domestic income (ε) and a global factor $\nu = \{0, 1\}$ (assumed to be independent of ε)

$$m_{t,t+1} = e^{-r - \nu t (\kappa \varepsilon_{t+1} + 0.5\kappa^2 \sigma^2)}$$, with $\kappa \geq 0$,

• Functional form + normality of ε → constant short-term rate:

$$\mathbb{E}_{s'|s} m(s, s') = e^{-r} = q_a$$, with $s = \{y^T, \nu\}$

• Bond price given by: $q = \mathbb{E}_{s'|s} \{ m(s, s')(1 - d') [\delta + (1 - \delta) q'] \}$

• Bond becomes a worse hedge if $\nu = 1$ and gov. tends to default with low ε

$$\implies$$ positive risk premium
Distribution of next-period unemployment for given \((a', b')\)

Note: higher reserves reduce future unemployment
Results: spreads, reserves and nominal rigidities

- Nominal rigidities **increase** spreads.
- Reserves **decrease** spreads, and **more** with nominal rigidities.
Appendix – Welfare

We’ll compute welfare costs of ‘moving’ from a baseline economy to an alternative economy:

\[
\text{Welfare gain} = 100 \times \left[\left(\frac{(1 - \gamma)(1 - \beta)V_{\text{baseline}} + 1}{(1 - \gamma)(1 - \beta)V_{\text{alternative}} + 1} \right)^{1/(1 - \gamma)} - 1 \right]
\]

We’re interested in studying:

- Costs of nominal rigidities
- Costs of not having access to reserves

To do this: define a “No-Reserves” economy (which can be under “fixed” or “flex”).
• Eliminating nominal rigidities is **welfare enhancing**, and more so when reserve accumulation is not possible.
• Being able to accumulate reserves is **welfare enhancing**, and more so under **fixed**.
Initial debt = Avg. in simulations. Initial reserves = zero.
Appendix – Inflation Targeting

• Define price aggregator as

\[P \left(P^T, P^N \right) \equiv \left(\omega \frac{1}{1+\mu} \left(P^T \right)^{\frac{\mu}{1+\mu}} + (1 - \omega) \frac{1}{1+\mu} \left(P^N \right)^{\frac{\mu}{1+\mu}} \right)^{\frac{1+\mu}{\mu}}. \]

• Instead of fixing \(e = 1 \), gov. targets \(P = \bar{P} > 0 \)

• All this yields an exchange rate policy

\[e = \bar{P} / \mathcal{P} \left(c^T, h \right) \] \hspace{1cm} (1)

• Replace fixed \(e \) for (1).