International Reserve Management under Rollover Crises

Mauricio Barbosa-Alves ${ }^{\text {a }}$ Javier Bianchi ${ }^{\text {b }} \quad$ César Sosa-Padilla ${ }^{c}$
${ }^{a}$ University of Minnesota ${ }^{\mathrm{b}}$ Minneapolis Fed ${ }^{\mathrm{c}}$ University of Notre Dame \& NBER

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Motivation

To reduce the vulnerability to a debt crisis:

- Should the government reduce the debt or increase reserves?

Motivation

To reduce the vulnerability to a debt crisis:

- Should the government reduce the debt or increase reserves?

Answer unclear:

- Reserves provide liquidity, but reducing debt may be more effective

What we do

- Tractable model of rollover crises with long-duration bonds and reserves
- Sunspot shocks, deterministic income
- How should the government exit crisis zone?

What we do

- Tractable model of rollover crises with long-duration bonds and reserves
- Sunspot shocks, deterministic income
- How should the government exit crisis zone?

Preview:

- If heavily indebted, optimal to initially reduce debt and keep zero reserves
- Once debt is reduced sufficiently, optimal to increase debt and accumulate reserves
- Borrowing to accumulate reserves can reduce spreads

What we do

- Tractable model of rollover crises with long-duration bonds and reserves
- Sunspot shocks, deterministic income
- How should the government exit crisis zone?

Preview:

- If heavily indebted, optimal to initially reduce debt and keep zero reserves
- Once debt is reduced sufficiently, optimal to increase debt and accumulate reserves
- Borrowing to accumulate reserves can reduce spreads

Literature

- Alfaro and Kanczuk (2008): no reserves with one-period debt
- Reserves make default attractive \Rightarrow worsen debt sustainability

Literature

- Alfaro and Kanczuk (2008): no reserves with one-period debt
- Reserves make default attractive \Rightarrow worsen debt sustainability
- Bianchi, Hatchondo and Martinez (2018): positive reserves with long-term debt under fundamental defaults
- Reserves help avoid rolling over debt at high spreads
- Insurance within repayment states

Literature

- Alfaro and Kanczuk (2008): no reserves with one-period debt
- Reserves make default attractive \Rightarrow worsen debt sustainability
- Bianchi, Hatchondo and Martinez (2018): positive reserves with long-term debt under fundamental defaults
- Reserves help avoid rolling over debt at high spreads
- Insurance within repayment states
- Today: reserve management under rollover crisis
- Borrowing to accumulate reserves helps exiting the crisis zone

Literature

- Alfaro and Kanczuk (2008): no reserves with one-period debt
- Reserves make default attractive \Rightarrow worsen debt sustainability
- Bianchi, Hatchondo and Martinez (2018): positive reserves with long-term debt under fundamental defaults
- Reserves help avoid rolling over debt at high spreads
- Insurance within repayment states
- Today: reserve management under rollover crisis
- Borrowing to accumulate reserves helps exiting the crisis zone
- Hernandez (2019): numerical simulations w/ fundamental and sunspot shocks

Cole-Kehoe (2001); Corsetti-Dedola (2016); Aguiar-Amador (2020); Bianchi-Mondragon (2022); Bianchi and
Sosa-Padilla (2023); Corsetti-Maeng (2023ab)

Model

Environment

- Discrete time, infinite horizon. Constant endowment: $y_{t}=y$
- Government trades two assets ...
- short-term risk-free reserves, a
- long-term defaultable debt, b
- a bond issued in t promises to pay $\left(\frac{\delta+r}{1+r}\right)\left[1,(1-\delta),(1-\delta)^{2}, \ldots.\right]$
- Risk-neutral deep pocket international investors:
- Discount future flows at $1+r$, assume $\beta(1+r)=1$

Environment

- Discrete time, infinite horizon. Constant endowment: $y_{t}=y$
- Government trades two assets ...
- short-term risk-free reserves, a
- long-term defaultable debt, b
- a bond issued in t promises to pay $\left(\frac{\delta+r}{1+r}\right)\left[1,(1-\delta),(1-\delta)^{2}, \ldots.\right]$
- Risk-neutral deep pocket international investors:
- Discount future flows at $1+r$, assume $\beta(1+r)=1$
- Markov equilibrium w/ Cole-Kehoe (2000) timing:
- Borrowing at the beginning of the period
- Repay/default at the end

Government

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-\phi d_{t}\right]
$$

where $d_{t}=0(1)$ denotes repayment (default)

- If the government repays:

$$
c_{t}=y+a_{t}-\frac{\delta+r}{1+r} b_{t}+q_{t}\left(a_{t+1}, b_{t+1}\right)\left[b_{t+1}-(1-\delta) b_{t}\right]-\frac{a_{t+1}}{1+r}
$$

Government

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-\phi d_{t}\right]
$$

where $d_{t}=0(1)$ denotes repayment (default)

- If the government repays:

$$
c_{t}=y+a_{t}-\frac{\delta+r}{1+r} b_{t}+q_{t}\left(a_{t+1}, b_{t+1}\right)\left[b_{t+1}-(1-\delta) b_{t}\right]-\frac{a_{t+1}}{1+r}
$$

- If the government defaults:

$$
c_{t}=y+a_{t}-\frac{a_{t+1}}{1+r}
$$

and faces permanent exclusion and utility loss ϕ

Recursive Government Problem

- State is $s \equiv(a, b, \zeta)$
ζ denotes an iid sunspot that coordinates the lenders
- The government chooses to repay or default

$$
V(a, b, \zeta)=\max \left\{V_{R}(a, b, \zeta), V_{D}(a)\right\}
$$

If indifferent, assume repay

Value of Default

$$
V_{D}(a)=\max _{a^{\prime} \geq 0}\left\{u(c)-\phi+\beta V_{D}\left(a^{\prime}\right)\right\}
$$

subject to

$$
c \leq y+a-\frac{a^{\prime}}{1+r}
$$

Value of Default

$$
V_{D}(a)=\max _{a^{\prime} \geq 0}\left\{u(c)-\phi+\beta V_{D}\left(a^{\prime}\right)\right\}
$$

subject to

$$
c \leq y+a-\frac{a^{\prime}}{1+r}
$$

- Given $\beta(1+r)=1$, this is

$$
V_{D}(a)=\frac{u(y+(1-\beta) a)-\phi}{1-\beta}
$$

Value of Repayment

$$
V_{R}(a, b, \zeta)=\max _{a^{\prime} \geq 0, b^{\prime}}\left\{u(c)+\beta \mathbb{E} V\left(a^{\prime}, b^{\prime}, \zeta^{\prime}\right)\right\}
$$

subject to

$$
c=y+a-\left(\frac{\delta+r}{1+r}\right) b-\frac{a^{\prime}}{1+r}+q\left(a^{\prime}, b^{\prime}, s\right)\left[b^{\prime}-(1-\delta) b\right]
$$

Equilibrium Bond Price

$$
q\left(a^{\prime}, b^{\prime}, s\right)= \begin{cases}\frac{1}{1+r} \mathbb{E}\left[\left(1-d\left(s^{\prime}\right)\right)\left(\frac{\delta+r}{1+r}+(1-\delta) q\left(a^{\prime \prime}, b^{\prime \prime}, s^{\prime}\right)\right)\right] & \text { if } d(s)=0 \\ 0 & \text { if } d(s)=1\end{cases}
$$

where $a^{\prime \prime}\left(s^{\prime}\right)$ and $b^{\prime \prime}\left(s^{\prime}\right)$ are the future choice of reserves and debt

Multiplicity of Equilibria

- Coordination failure may lead to self-fulfilling crises (Cole-Kehoe)
- If lenders expect...
... repayment, they lend, and the government repays
... default, they don't lend, and the government defaults

Multiplicity of Equilibria

- Coordination failure may lead to self-fulfilling crises (Cole-Kehoe)
- If lenders expect...
... repayment, they lend, and the government repays
... default, they don't lend, and the government defaults

Next: incentives to default depending on initial portfolio and whether investors are willing to roll over or not

Repayment value when government can rollover

$$
\begin{aligned}
& V_{R}^{+}(a, b)=\max _{a^{\prime} \geq 0, b^{\prime}}\left\{u(c)+\beta \mathbb{E} V\left(a^{\prime}, b^{\prime}, s^{\prime}\right)\right\} \\
& \text { subject to } \\
& c=y+a-\left(\frac{\delta+r}{1+r}\right) b-\frac{a^{\prime}}{1+r}+\tilde{q}\left(a^{\prime}, b^{\prime}\right)\left(b^{\prime}-(1-\delta) b\right)
\end{aligned}
$$

where $\tilde{q}\left(a^{\prime}, b^{\prime}\right)$ denotes fundamental bond price

Repayment Value in a Run

$$
\begin{aligned}
& V_{R}^{-}(a, b)=\max _{a^{\prime} \geq 0}\left\{u(c)+\beta \mathbb{E} V\left(a^{\prime},(1-\delta) b, s^{\prime}\right)\right\} \\
& \text { subject to } \\
& c=y+a-\frac{a^{\prime}}{1+r}-\left(\frac{\delta+r}{1+r}\right) b
\end{aligned}
$$

To pay debt, need to use reserves or cut consumption

Characterization

Safe zone, crisis zone and default zone

- Immediate: $V_{R}^{+}(a, b) \geq V_{R}^{-}(a, b)$
- When $V_{R}^{-}(a, b)<V_{D}(a) \leq V_{R}^{+}(a, b)$, multiple equilibria

Safe zone, crisis zone and default zone

- Immediate: $V_{R}^{+}(a, b) \geq V_{R}^{-}(a, b)$
- When $V_{R}^{-}(a, b)<V_{D}(a) \leq V_{R}^{+}(a, b)$, multiple equilibria

$$
\begin{aligned}
\mathbf{S} & =\left\{(a, b): V_{D}(a) \leq V_{R}^{-}(a, b)\right\}, \\
\mathbf{D} & =\left\{(a, b): V_{D}(a)>V_{R}^{+}(a, b)\right\}, \\
\mathbf{C} & =\left\{(a, b): V_{R}^{-}(a, b)<V_{D}(a) \leq V_{R}^{+}(a, b)\right\} .
\end{aligned}
$$

The Value in the Safe zone

- If $(a, b) \in \mathbf{S}$: we assume gov. stays in safe zone

$$
V^{S}(a-b)=\frac{u(y+(1-\beta)(a-b))}{1-\beta}
$$

The Value in the Safe zone

- If $(a, b) \in \mathbf{S}$: we assume gov. stays in safe zone

$$
V^{S}(a-b)=\frac{u(y+(1-\beta)(a-b))}{1-\beta}
$$

- Note: relevant state variable is the NFA, $a-b$

The Value in the Safe zone

- If $(a, b) \in \mathbf{S}$: we assume gov. stays in safe zone

$$
V^{S}(a-b)=\frac{u(y+(1-\beta)(a-b))}{1-\beta}
$$

- Note: relevant state variable is the NFA, $a-b$

For a high enough δ : can establish that gov. finds it optimal to stay in \mathbf{S}

The Crisis Zone

The Crisis Zone

- If $(a, b) \in \mathbf{C}$, govt. seeks to exit in finite time (may default along the way if bad sunspot hits)
- Staying in the crisis zone implies eventually costly default
- Speed of exit depends on curvature of $u(\cdot)$ and probability of bad sunspot

The Crisis Zone

- If $(a, b) \in \mathbf{C}$, govt. seeks to exit in finite time (may default along the way if bad sunspot hits)
- Staying in the crisis zone implies eventually costly default
- Speed of exit depends on curvature of $u(\cdot)$ and probability of bad sunspot

Continuation value:

$$
\mathbb{E} V\left(a^{\prime}, b^{\prime}, \zeta^{\prime}\right)= \begin{cases}V^{S}\left(a^{\prime}-b^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{S} \\ (1-\lambda) V_{R}^{+}\left(a^{\prime}, b^{\prime}\right)+\lambda V_{D}\left(a^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{C} \\ V_{D}\left(a^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{D}\end{cases}
$$

The Crisis Zone

- If $(a, b) \in \mathbf{C}$, govt. seeks to exit in finite time (may default along the way if bad sunspot hits)
- Staying in the crisis zone implies eventually costly default
- Speed of exit depends on curvature of $u(\cdot)$ and probability of bad sunspot

Continuation value:

$$
\mathbb{E} V\left(a^{\prime}, b^{\prime}, \zeta^{\prime}\right)= \begin{cases}V^{S}\left(a^{\prime}-b^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{S} \\ (1-\lambda) V_{R}^{+}\left(a^{\prime}, b^{\prime}\right)+\lambda V_{D}\left(a^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{C} \\ V_{D}\left(a^{\prime}\right) & \text { if }\left(a^{\prime}, b^{\prime}\right) \in \mathbf{D}\end{cases}
$$

How to exit: raise a or lower b ?

The Crisis Zone (ctd)

Consider portfolio $(a, b) \in \mathbf{C}$. If government exits in $T(a, b)$ as long as $\left\{\zeta_{t}\right\}_{t=0}^{T-1}$:

$$
q\left(a^{\prime}, b^{\prime}\right)=\frac{\delta+r}{1+r} \sum_{t=1}^{T-1}\left(\frac{1-\lambda}{1+r}\right)^{t}(1-\delta)^{t-1}+\left[\frac{(1-\lambda)(1-\delta)}{1+r}\right]^{T-1} \frac{1}{1+r}
$$

The Crisis Zone (ctd)

Consider portfolio $(a, b) \in \mathbf{C}$. If government exits in $T(a, b)$ as long as $\left\{\zeta_{t}\right\}_{t=0}^{T-1}$:

$$
q\left(a^{\prime}, b^{\prime}\right)=\frac{\delta+r}{1+r} \sum_{t=1}^{T-1}\left(\frac{1-\lambda}{1+r}\right)^{t}(1-\delta)^{t-1}+\left[\frac{(1-\lambda)(1-\delta)}{1+r}\right]^{T-1} \frac{1}{1+r}
$$

Proposition 1 (Monotonically increasing consumption path)

Consider an initial portfolio $\left(a_{0}, b_{0}\right) \in \mathbf{C}$ such that the government exit time is T. Then, if $\zeta_{t}=0$ for all $t \leq T-1$, we have $c_{t+1} \geq c_{t}$ for all $t \leq T$.

Debt Thresholds

$V^{R}(a, b)$ decreasing in $b \Rightarrow$ for every a, there \exists unique thresholds $b^{-}(a), b^{+}(a)$:

$$
\begin{aligned}
& V_{R}^{-}\left(a, b^{-}(a)\right)=V_{D}(a) \\
& V_{R}^{+}\left(a, b^{+}(a)\right)=V_{D}(a)
\end{aligned}
$$

Debt Thresholds

$V^{R}(a, b)$ decreasing in $b \Rightarrow$ for every a, there \exists unique thresholds $b^{-}(a), b^{+}(a)$:

$$
\begin{aligned}
& V_{R}^{-}\left(a, b^{-}(a)\right)=V_{D}(a) \\
& V_{R}^{+}\left(a, b^{+}(a)\right)=V_{D}(a)
\end{aligned}
$$

Thresholds are such that:

1. $(a, b) \in \mathbf{S}$ if and only if $b \leq b^{-}(a)$
2. $(a, b) \in \mathbf{C}$ if and only if $b^{-}(a)<b \leq b^{+}(a)$
3. $(a, b) \in \mathbf{D}$ if and only if $b>b^{+}(a)$

The Three Zones

The slopes of the two boundaries

Recall: $V_{R}^{-}\left(a, b^{-}(a)\right)=V_{D}(a)$ and $V_{R}^{+}\left(a, b^{+}(a)\right)=V_{D}(a)$

The slopes of the two boundaries

Recall: $V_{R}^{-}\left(a, b^{-}(a)\right)=V_{D}(a)$ and $V_{R}^{+}\left(a, b^{+}(a)\right)=V_{D}(a)$

Differentiating with respect to a

$$
\begin{aligned}
& \frac{\partial b^{-}(a)}{\partial a}=\frac{\frac{\partial V_{D}(a)}{\partial a}-\frac{\partial V_{R}^{-}\left(a, b^{-}(a)\right)}{\partial a}}{\frac{\partial V_{R}^{-}\left(a, b^{-}(a)\right)}{\partial b}} \\
& \frac{\partial b^{+}(a)}{\partial a}=\frac{\frac{\partial V_{D}(a)}{\partial a}-\frac{\partial V_{R}^{+}\left(a, b^{+}(a)\right)}{\partial a}}{\frac{\partial V_{R}^{+}\left(a, b^{+}(a)\right)}{\partial b}}
\end{aligned}
$$

The slopes of the two boundaries

Recall: $V_{R}^{-}\left(a, b^{-}(a)\right)=V_{D}(a)$ and $V_{R}^{+}\left(a, b^{+}(a)\right)=V_{D}(a)$

Differentiating with respect to a

$$
\begin{aligned}
& \frac{\partial b^{-}(a)}{\partial a}=\frac{\frac{\partial V_{D}(a)}{\partial a}-\frac{\partial V_{R}^{-}\left(a, b^{-}(a)\right)}{\partial a}}{\frac{\partial V_{R}^{-}\left(a, b^{-}(a)\right)}{\partial b}} \\
& \frac{\partial b^{+}(a)}{\partial a}=\frac{\frac{\partial V_{D}(a)}{\partial a}-\frac{\partial V_{R}^{+}\left(a, b^{+}(a)\right)}{\partial a}}{\frac{\partial V_{R}^{+}\left(a, b^{+}(a)\right)}{\partial b}}
\end{aligned}
$$

Proposition 2 establishes: $\frac{\partial b^{-}(a)}{\partial a} \geq \frac{\partial b^{+}(a)}{\partial a}>0$

Lowest-NFA safe portfolio

$$
\begin{gathered}
\left(a^{\star}, b^{\star}\right)=\underset{a, b}{\operatorname{argmin}} a-b \\
\text { s.t. } \quad(a, b) \in \mathbf{S}
\end{gathered}
$$

Lowest-NFA safe portfolio

$$
\begin{gathered}
\left(a^{\star}, b^{\star}\right)=\underset{a, b}{\operatorname{argmin}} a-b \\
\text { s.t. } \quad(a, b) \in \mathbf{S}
\end{gathered}
$$

Using that $(a, b) \in \mathbf{S}$ if $b \leq b^{-}(a)$ and assuming a strictly interior solution for a^{\star}, we obtain:

$$
\frac{\partial b^{-}\left(a^{\star}\right)}{\partial a}=1
$$

Lowest-NFA safe portfolio

Lowest-NFA safe portfolio

Lowest-NFA safe portfolio

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Proposition 3 (Positive reserves)

Suppose that the boundary of the crisis region at zero reserves $b^{-}(0)$ satisfies

$$
\beta(1-\delta)\left[u^{\prime}\left(y-\left(\frac{\delta+r}{1+r}\right) b^{-}(0)\right)-u^{\prime}\left(y-(1-\beta)(1-\delta) b^{-}(0)\right)\right]>u^{\prime}(y)
$$

Then, the lowest-NFA safe portfolio has strictly positive reserves, $a^{\star}>0$

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Proposition 3 (Positive reserves)

Suppose that the boundary of the crisis region at zero reserves $b^{-}(0)$ satisfies

$$
\beta(1-\delta)\left[u^{\prime}\left(y-\left(\frac{\delta+r}{1+r}\right) b^{-}(0)\right)-u^{\prime}\left(y-(1-\beta)(1-\delta) b^{-}(0)\right)\right]>u^{\prime}(y)
$$

Then, the lowest-NFA safe portfolio has strictly positive reserves, $a^{\star}>0$

- Proposition implies $\left.\frac{\partial b^{-}(a)}{\partial a}\right|_{a=0}>1$

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Proposition 3 (Positive reserves)

Suppose that the boundary of the crisis region at zero reserves $b^{-}(0)$ satisfies

$$
\beta(1-\delta)\left[u^{\prime}\left(y-\left(\frac{\delta+r}{1+r}\right) b^{-}(0)\right)-u^{\prime}\left(y-(1-\beta)(1-\delta) b^{-}(0)\right)\right]>u^{\prime}(y)
$$

Then, the lowest-NFA safe portfolio has strictly positive reserves, $a^{\star}>0$

- Proposition implies $\left.\frac{\partial b^{-}(a)}{\partial a}\right|_{a=0}>1$
- When does it fail?

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Proposition 3 (Positive reserves)

Suppose that the boundary of the crisis region at zero reserves $b^{-}(0)$ satisfies

$$
\beta(1-\delta)\left[u^{\prime}\left(y-\left(\frac{\delta+r}{1+r}\right) b^{-}(0)\right)-u^{\prime}\left(y-(1-\beta)(1-\delta) b^{-}(0)\right)\right]>u^{\prime}(y)
$$

Then, the lowest-NFA safe portfolio has strictly positive reserves, $a^{\star}>0$

- Proposition implies $\left.\frac{\partial b^{-}(a)}{\partial a}\right|_{a=0}>1$
- When does it fail? (i) low risk-aversion

Lowest-NFA safe portfolio

$\left(a^{\star}, b^{\star}\right)$ is a focal point. When do we have $a^{\star}>0$?

Proposition 3 (Positive reserves)

Suppose that the boundary of the crisis region at zero reserves $b^{-}(0)$ satisfies

$$
\beta(1-\delta)\left[u^{\prime}\left(y-\left(\frac{\delta+r}{1+r}\right) b^{-}(0)\right)-u^{\prime}\left(y-(1-\beta)(1-\delta) b^{-}(0)\right)\right]>u^{\prime}(y)
$$

Then, the lowest-NFA safe portfolio has strictly positive reserves, $a^{\star}>0$

- Proposition implies $\left.\frac{\partial b^{-}(a)}{\partial a}\right|_{a=0}>1$
-When does it fail? (i) low risk-aversion, (ii) one-period debt ($\delta=1$) [Prop. 4]

Lowest-NFA safe portfolio

Lowest-NFA safe portfolio

Simulations: Exiting the Crisis Zone

Parametrization

$$
u(c)=\frac{(c-\underline{c})^{1-\sigma}}{1-\sigma}
$$

Parameter	Value	Description	Source
y	1	Endowment	Normalization
σ	2	Risk-aversion	Standard
r	3%	Risk-free rate	Standard
$1 / \delta$	7	Maturity of debt	Italian Debt
\bar{c}	0.70	Consumption floor	Bocola-Dovis (2019)
β	$(1+r)^{-1}$	Discount factor	$\beta(1+r)=1$
λ	0.5%	Sunspot probability	Baseline
ϕ	0.34	Default Cost	Debt-to-income $=90 \%$

Optimal Exit Strategy

Q1: How many periods until exiting?

- Inside the Crisis Zone we can define Iso-T regions

Optimal Exit Strategy

Q1: How many periods until exiting?

- Inside the Crisis Zone we can define Iso-T regions

Q2: What's the best strategy to exit the crisis zone?

- Should the government reduce its debt or increase reserves?
- If reserves are optimal, should gov. slowly build up its stock of reserves?

How many periods until exit
Iso-T Regions

Deleveraging Path

Deleveraging Path

Safety in Two Periods $\rightarrow\left(a^{\star}, b^{\star}\right)$

Deleveraging Path

Safety in Two Periods $\rightarrow\left(a^{\star}, b^{\star}\right)$

Deleveraging Path

Safety in Three Periods $\rightarrow\left(a^{\star}, b^{\star}\right)$

Deleveraging Path

Safety in Three Periods $\rightarrow\left(a^{\star}, b^{\star}\right)$

Deleveraging Path

Safety in Three Periods $\rightarrow\left(a^{\star}, b^{\star}\right)$

Deleveraging Path

Possible chosen portfolios for $a-b<a^{\star}-b^{\star}$

Deleveraging Path

Safety in One Period $\rightarrow\left(a-b>a^{\star}-b^{\star}\right)$

Deleveraging Path

Policies

Debt, b^{\prime}
Reserves, a^{\prime}

Policies

Net Foreign Assets, $a^{\prime}-b^{\prime}$
Consumption

Deleveraging Dynamics

Reserves, a

Debt, b

Consumption

Net Foreign Assets

Debt Price, $q\left(a^{\prime}, b^{\prime}, s\right)$

Taking Stock

To exit crisis zone, first deleverage, then raise debt and reserves

Taking Stock

To exit crisis zone, first deleverage, then raise debt and reserves

- If initial portfolio (a, b) is such that $(a, b) \in \mathbf{C}$ and $a-b>a^{\star}-b^{\star}$. Then optimal to exit in one period and choose $a^{\prime}=a^{\star}$
- If initial portfolio (a, b) is such that $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{C}$. Then, the optimal solution features $a^{\prime}=0$.

Taking Stock

To exit crisis zone, first deleverage, then raise debt and reserves

- If initial portfolio (a, b) is such that $(a, b) \in \mathbf{C}$ and $a-b>a^{\star}-b^{\star}$. Then optimal to exit in one period and choose $a^{\prime}=a^{\star}$
- If initial portfolio (a, b) is such that $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{C}$. Then, the optimal solution features $a^{\prime}=0$.

Remark on maturity:

- With one-period debt, $\delta=1: V_{R}{ }^{-}$and $V_{R^{+}}$are unaffected by equal increases in debt and reserves \Rightarrow issuing debt to accumulate reserves increases spreads
- Zero reserves are optimal

Experiment - How reserves help exit crisis zone

- Assume gov. starts w/ portfolio (a, b), but from $\mathrm{t}+1$ onward, $a^{\prime}=0$

Experiment - How reserves help exit crisis zone

- Assume gov. starts $w /$ portfolio (a, b), but from $t+1$ onward, $a^{\prime}=0$
- Exiting the crisis zone becomes more painful $\Rightarrow\left(0, b^{-}(0)\right)$ instead of $\left(a^{\star}, b^{\star}\right)$
- Either take longer to exit or cut more consumption

Experiment - How reserves help exit crisis zone

- Assume gov. starts $w /$ portfolio (a, b), but from $t+1$ onward, $a^{\prime}=0$
- Exiting the crisis zone becomes more painful $\Rightarrow\left(0, b^{-}(0)\right)$ instead of $\left(a^{\star}, b^{\star}\right)$
- Either take longer to exit or cut more consumption

Experiment - How reserves help exit crisis zone

- Assume gov. starts w/ portfolio (a, b), but from $t+1$ onward, $a^{\prime}=0$
- Exiting the crisis zone becomes more painful $\Rightarrow\left(0, b^{-}(0)\right)$ instead of $\left(a^{\star}, b^{\star}\right)$
- Either take longer to exit or cut more consumption

Without reserves: $\downarrow b^{+}$. More costly to deleverage \Rightarrow lower debt-carrying capacity

Price Schedule, $q\left(0, b^{\prime}\right)$

Lower consumption without reserves

Reserves, a

Debt, b
Consumption

Net Foreign Assets

Debt Price, $q\left(a^{\prime}, b^{\prime}, s\right)$

Longer to exit without reserves

Reserves, a

Debt, b

Consumption

Net Foreign Assets

Debt Price, $q\left(a^{\prime}, b^{\prime}, s\right)$

Conclusions

- Simple theory of optimal foreign reserve management under rollover risk
- Optimal to accumulate reserves to reduce vulnerability
- However, only after debt has been reduced towards safe zone
- Issuing debt to accumulate reserves can reduce spreads

Conclusions

- Simple theory of optimal foreign reserve management under rollover risk
- Optimal to accumulate reserves to reduce vulnerability
- However, only after debt has been reduced towards safe zone
- Issuing debt to accumulate reserves can reduce spreads
- Findings speak to policy discussions on appropriate level of FX reserves (e.g. IMF)
- Following a debt crisis, IMF often prescribes increasing reserves
- However, we find holding reserves not optimal at beginning of deleveraging process

Scan to find the paper!

THANKS!

Prelude

If government not vulnerable tomorrow after repaying in a run:

$$
\left.\max _{a^{\prime}} u\left(y-\frac{\delta+r}{1+r} b+a-\frac{a^{\prime}}{1+r}\right)+\beta V^{S}\left(a^{\prime}-(1-\delta) b\right)\right)
$$

- Solution: $a^{\prime}(a, b)=\max [0, a-\delta b]$.
- With low initial reserves, government constrained $\Rightarrow a^{\prime}=0$

Prelude

If government not vulnerable tomorrow after repaying in a run:

$$
\left.\max _{a^{\prime}} u\left(y-\frac{\delta+r}{1+r} b+a-\frac{a^{\prime}}{1+r}\right)+\beta V^{S}\left(a^{\prime}-(1-\delta) b\right)\right)
$$

- Solution: $a^{\prime}(a, b)=\max [0, a-\delta b]$.
- With low initial reserves, government constrained $\Rightarrow a^{\prime}=0$
- If $a \geq \delta b$ and $(a-\delta b,(1-\delta) b) \in \mathcal{S}$, then $V_{R}^{-}(a, b)=V_{R}^{+}(a, b)$.
- If high reserves, govt. can achieve unconstrained consumption even in a run
- Note reserves enough to pay all coupons not needed!
- Just enough to repay the fraction of the debt that would allow the keep the same NFA,

Sensitivity: effect of maturity and risk-aversion on a^{\star}

Maturity

Risk aversion

Panels show the level of a^{\star} for different values for δ and σ. The value of ϕ is recalibrated to match the same debt level $b^{-}(0)$ as in baseline.

Default zone expands

